This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A188817 #17 Mar 04 2020 13:48:47 %S A188817 1,2,2,3,3,2,2,1,2,3,2,2,2,3,2,3,3,2,3,3,3,2,2,1,2,3,3,3,2,2,2,3,3,3, %T A188817 2,3,4,3,3,3,4,4,4,3,3,3,4,3,3,3,2,3,3,4,3,3,3,3,3,4,3,3,3,4,5,5,5,4, %U A188817 4,3,4,4,4,4,5,4,4,4,4,3,4,4,3,3,3,3,3,4,3,3,3,4,3,4,4,4,4,5,4,5,5,5,6,6,6,6,6,5,5,5,5,4,4,3,3,3,4,3,3,2 %N A188817 Number of primes between n-sqrt(n) and n+sqrt(n), inclusive. %C A188817 It appears that all terms are positive. %H A188817 Robert Israel, <a href="/A188817/b188817.txt">Table of n, a(n) for n = 1..10000</a> %e A188817 a(1)=1 because prime 2 is in [0,2]. %e A188817 a(2)=2 because primes 2 and 3 are between 2-sqrt(2) and 2+sqrt(2). %e A188817 a(3)=2 because primes 2 and 3 are between 3-sqrt(3) and 3+sqrt(3). %e A188817 a(4)=3 because primes 2, 3, and 5 are in [2,6]. %p A188817 A188817 := proc(n) local low,hi; low := n-sqrt(n) ; if not issqr(n) then low := ceil(low) ; end if; hi := n+sqrt(n) ; if not issqr(n) then hi := floor(hi) ; end if; numtheory[pi](hi)-numtheory[pi](low-1) ; end proc: %p A188817 seq(A188817(n),n=1..50) ; # _R. J. Mathar_, Apr 12 2011 %t A188817 Join[{1, 2, 2, 3}, Table[PrimePi[n + Sqrt[n]] - PrimePi[n - Sqrt[n]], {n, 5, 120}]] (* _T. D. Noe_, Apr 11 2011 *) %Y A188817 Cf. A114021, A060715. %K A188817 nonn,look %O A188817 1,2 %A A188817 _Juri-Stepan Gerasimov_, Apr 11 2011 %E A188817 Corrected by _T. D. Noe_, Apr 11 2011