A188822 Number of n X 7 binary arrays without the pattern 0 1 diagonally or antidiagonally.
128, 1156, 3888, 8836, 15776, 24964, 36000, 49284, 64416, 81796, 101024, 122500, 145824, 171396, 198816, 228484, 260000, 293764, 329376, 367236, 406944, 448900, 492704, 538756, 586656, 636804, 688800, 743044, 799136, 857476, 917664, 980100
Offset: 1
Keywords
Examples
Some solutions for 3 X 7: ..1..1..1..0..1..1..1....1..1..1..1..1..0..1....1..1..1..1..1..1..1 ..1..1..0..0..0..0..1....1..1..0..1..0..1..0....1..0..1..0..0..1..0 ..0..0..0..0..0..0..0....1..0..1..0..0..0..0....0..1..0..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A188824.
Formula
Empirical: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4) for n>7.
Conjectures from Colin Barker, Apr 30 2018: (Start)
G.f.: 4*x*(32 + 225*x + 394*x^2 + 329*x^3 + 72*x^4 + 8*x^5 - 36*x^6) / ((1 - x)^3*(1 + x)).
a(n) = 2*(578 - 1088*n + 512*n^2) for n>3 and even.
a(n) = 2*(528 - 1088*n + 512*n^2) for n>3 and odd.
(End)
Comments