A188823 Number of n X 8 binary arrays without the pattern 0 1 diagonally or antidiagonally.
256, 3025, 11664, 28561, 53824, 87616, 129600, 179776, 238144, 304704, 379456, 462400, 553536, 652864, 760384, 876096, 1000000, 1132096, 1272384, 1420864, 1577536, 1742400, 1915456, 2096704, 2286144, 2483776, 2689600, 2903616, 3125824
Offset: 1
Keywords
Examples
Some solutions for 3 X 8: ..1..1..1..0..1..0..1..0....1..1..0..1..1..1..1..1....0..1..1..1..1..1..1..1 ..0..1..0..1..0..1..0..0....1..0..1..0..1..1..0..1....0..0..1..0..1..1..1..0 ..0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A188824.
Formula
Empirical: a(n) = 4096*n^2 - 11264*n + 7744 for n>4.
Empirical g.f.: x*(256 + 2257*x + 3357*x^2 + 2388*x^3 + 108*x^4 + 163*x^5 - 337*x^6) / (1 - x)^3. - Colin Barker, Apr 30 2018
Comments