cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188831 Primes of the form k^2 - prime(k).

This page as a plain text file.
%I A188831 #19 Sep 08 2022 08:45:56
%S A188831 23,71,107,263,487,677,787,1427,1583,2081,3319,5393,8713,10247,11071,
%T A188831 12377,18257,20477,24659,26573,29243,29927,33487,34949,37223,37991,
%U A188831 41981,51449,60917,64937,66977,71167,83357,85667,99013,100271,109313,110629,118757
%N A188831 Primes of the form k^2 - prime(k).
%C A188831 Or, primes in A073497. Corresponding values of k in A064712.
%C A188831 This is to A073497 and A064712 as A184935 is to A004232 and A064711.
%C A188831 The two primes prime(k) and k^2-prime(k) are a Goldbach partition of k^2. - _T. D. Noe_, Apr 14 2011
%H A188831 Zak Seidov, <a href="/A188831/b188831.txt">Table of n, a(n) for n = 1..1000</a>
%F A188831 a(n) = A073497(A064712(n)).
%e A188831 23 is here because 6^2 - prime(6) = 36 - 13 = 23.
%t A188831 Select[Table[k^2 - Prime[k], {k, 1000}], PrimeQ] (* _T. D. Noe_, Apr 14 2011 *)
%o A188831 (Magma) [ a: k in [0..10000] | IsPrime(a) where a is k^2-NthPrime(k) ]; // _Vincenzo Librandi_, Apr 14 2011
%Y A188831 Cf. A004232, A064711, A064712, A073497, A184935.
%K A188831 nonn
%O A188831 1,1
%A A188831 _Zak Seidov_, Apr 11 2011