A188840 Number of n X 6 binary arrays without the pattern 0 1 diagonally or vertically.
64, 377, 1093, 2380, 4488, 7752, 12597, 19551, 29260, 42504, 60214, 83490, 113620, 152100, 200655, 261261, 336168, 427924, 539400, 673816, 834768, 1026256, 1252713, 1519035, 1830612, 2193360, 2613754, 3098862, 3656380, 4294668, 5022787, 5850537
Offset: 1
Keywords
Examples
Some solutions for 3 X 6: ..1..1..1..1..1..1....1..1..1..1..1..1....0..0..0..1..1..0....1..1..1..1..1..1 ..1..1..1..1..1..1....0..0..1..1..1..1....0..0..0..0..1..0....1..1..1..1..0..0 ..0..0..1..1..0..1....0..0..0..1..1..0....0..0..0..0..0..0....1..1..0..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A188843.
Formula
Empirical: a(n) = (1/720)*n^6 + (17/240)*n^5 + (203/144)*n^4 + (647/48)*n^3 + (2659/45)*n^2 + (1379/20)*n - 143 for n>3.
Empirical g.f.: x*(64 - 71*x - 202*x^2 + 406*x^3 - 174*x^4 - 88*x^5 + 67*x^6 + 6*x^7 - 6*x^8 - x^9) / (1 - x)^7. - Colin Barker, Apr 30 2018
Comments