cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188843 T(n,k) is the number of n X k binary arrays without the pattern 0 1 diagonally or vertically.

This page as a plain text file.
%I A188843 #11 Dec 13 2021 02:23:51
%S A188843 2,4,3,8,8,4,16,21,13,5,32,55,40,19,6,64,144,121,66,26,7,128,377,364,
%T A188843 221,100,34,8,256,987,1093,728,364,143,43,9,512,2584,3280,2380,1288,
%U A188843 560,196,53,10,1024,6765,9841,7753,4488,2108,820,260,64,11,2048,17711,29524
%N A188843 T(n,k) is the number of n X k binary arrays without the pattern 0 1 diagonally or vertically.
%C A188843 Table starts
%C A188843    2  4   8   16   32    64    128    256     512     1024     2048      4096
%C A188843    3  8  21   55  144   377    987   2584    6765    17711    46368    121393
%C A188843    4 13  40  121  364  1093   3280   9841   29524    88573   265720    797161
%C A188843    5 19  66  221  728  2380   7753  25213   81927   266110   864201   2806272
%C A188843    6 26 100  364 1288  4488  15504  53296  182688   625184  2137408   7303360
%C A188843    7 34 143  560 2108  7752  28101 100947  360526  1282735  4552624  16131656
%C A188843    8 43 196  820 3264 12597  47652 177859  657800  2417416  8844448  32256553
%C A188843    9 53 260 1156 4845 19551  76912 297275 1134705  4292145 16128061  60304951
%C A188843   10 64 336 1581 6954 29260 119416 476905 1874730  7283640 28048800 107286661
%C A188843   11 76 425 2109 9709 42504 179630 740025 2991495 11920740 46981740 183579396
%H A188843 R. H. Hardin, <a href="/A188843/b188843.txt">Table of n, a(n) for n = 1..1741</a>
%F A188843 Row recurrence
%F A188843 Empirical: T(n,k) = Sum_{i=1..floor((n+2)/2)} binomial(n+2-i,i)*T(n,k-i)*(-1)^(i-1).
%F A188843 E.g.,
%F A188843 empirical: T(1,k) = 2*T(1,k-1),
%F A188843 empirical: T(2,k) = 3*T(2,k-1) -    T(2,k-2),
%F A188843 empirical: T(3,k) = 4*T(3,k-1) -  3*T(3,k-2),
%F A188843 empirical: T(4,k) = 5*T(4,k-1) -  6*T(4,k-2) +    T(4,k-3),
%F A188843 empirical: T(5,k) = 6*T(5,k-1) - 10*T(5,k-2) +  4*T(5,k-3),
%F A188843 empirical: T(6,k) = 7*T(6,k-1) - 15*T(6,k-2) + 10*T(6,k-3) -    T(6,k-4),
%F A188843 empirical: T(7,k) = 8*T(7,k-1) - 21*T(7,k-2) + 20*T(7,k-3) -  5*T(7,k-4),
%F A188843 empirical: T(8,k) = 9*T(8,k-1) - 28*T(8,k-2) + 35*T(8,k-3) - 15*T(8,k-4) + T(8,k-5).
%F A188843 Columns are polynomials for n > k-3.
%F A188843 Empirical: T(n,1) = n + 1.
%F A188843 Empirical: T(n,2) = (1/2)*n^2 + (5/2)*n + 1.
%F A188843 Empirical: T(n,3) = (1/6)*n^3 + 2*n^2 + (35/6)*n.
%F A188843 Empirical: T(n,4) = (1/24)*n^4 + (11/12)*n^3 + (155/24)*n^2 + (163/12)*n - 6 for n > 1.
%F A188843 Empirical: T(n,5) = (1/120)*n^5 + (7/24)*n^4 + (89/24)*n^3 + (473/24)*n^2 + (1877/60)*n - 33 for n > 2.
%F A188843 Empirical: T(n,6) = (1/720)*n^6 + (17/240)*n^5 + (203/144)*n^4 + (647/48)*n^3 + (2659/45)*n^2 + (1379/20)*n - 143 for n > 3.
%F A188843 Empirical: T(n,7) = (1/5040)*n^7 + (1/72)*n^6 + (143/360)*n^5 + (53/9)*n^4 + (33667/720)*n^3 + (12679/72)*n^2 + (9439/70)*n - 572 for n > 4.
%F A188843 Empirical: T(n,8) = (1/40320)*n^8 + (23/10080)*n^7 + (17/192)*n^6 + (269/144)*n^5 + (43949/1920)*n^4 + (228401/1440)*n^3 + (1054411/2016)*n^2 + (9941/56)*n - 2210 for n > 5.
%e A188843 Some solutions for 5 X 3:
%e A188843   0 0 1    1 1 0    1 1 1    0 1 0    1 1 0    1 1 0    1 1 1
%e A188843   0 0 0    1 0 0    1 1 0    0 0 0    1 1 0    1 1 0    1 1 1
%e A188843   0 0 0    0 0 0    1 1 0    0 0 0    1 0 0    1 1 0    0 1 1
%e A188843   0 0 0    0 0 0    1 1 0    0 0 0    1 0 0    1 0 0    0 0 0
%e A188843   0 0 0    0 0 0    0 0 0    0 0 0    0 0 0    0 0 0    0 0 0
%Y A188843 Diagonal is A143388.
%Y A188843 Column 2 is A034856(n+1).
%Y A188843 Column 3 is A137742(n+1).
%Y A188843 Row 2 is A001906(n+1).
%Y A188843 Row 3 is A003462(n+1).
%Y A188843 Row 4 is A005021.
%Y A188843 Row 5 is A005022.
%Y A188843 Row 6 is A005023.
%Y A188843 Row 7 is A005024.
%Y A188843 Row 8 is A005025.
%K A188843 nonn,tabl
%O A188843 1,1
%A A188843 _R. H. Hardin_, Apr 12 2011