cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A188844 Number of n X n binary arrays without the pattern 0 0 1 vertically, antidiagonally or horizontally.

Original entry on oeis.org

2, 16, 219, 5711, 262588, 23131221, 3821933610, 1214926248918, 740978404013252, 873971605623906976, 1995026546716994781891, 8837351494869683292347918, 76024359194576916691616836771, 1271387131008663780693344655620080
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2011

Keywords

Comments

Diagonal of A188851.

Examples

			Some solutions for 3 X 3
..1..0..0....1..1..1....1..1..1....1..1..0....1..0..0....0..1..0....0..1..0
..0..1..1....1..1..0....1..0..1....1..1..1....1..1..1....1..1..1....1..1..1
..1..0..0....1..1..0....1..1..0....1..0..0....1..0..0....0..0..0....1..0..0
		

Crossrefs

Cf. A188851.

A188845 Number of nX3 binary arrays without the pattern 0 0 1 vertically, antidiagonally or horizontally.

Original entry on oeis.org

7, 49, 219, 958, 3860, 15358, 59939, 232747, 899307, 3468816, 13362322, 51445648, 197998075, 761910893, 2931606169, 11279434226, 43396799102, 166963886874, 642368646269, 2471408829291, 9508325156265, 36581628609584, 140741386091368
Offset: 1

Views

Author

R. H. Hardin Apr 12 2011

Keywords

Comments

Column 3 of A188851

Examples

			Some solutions for 4X3
..0..1..1....0..1..1....1..0..0....0..1..1....1..1..1....1..1..0....1..0..1
..1..1..1....0..1..0....0..1..1....1..0..1....1..1..0....0..1..0....0..1..1
..0..1..1....0..1..1....1..0..0....0..1..0....1..0..1....1..0..0....0..1..1
..1..1..0....0..1..1....0..0..0....1..1..1....0..0..0....0..0..0....0..1..0
		

Formula

Empirical: a(n) = 7*a(n-1) -10*a(n-2) -22*a(n-3) +57*a(n-4) +3*a(n-5) -77*a(n-6) +21*a(n-7) +42*a(n-8) -10*a(n-9) -13*a(n-10) +a(n-11) +2*a(n-12)

A188846 Number of nX4 binary arrays without the pattern 0 0 1 vertically, antidiagonally or horizontally.

Original entry on oeis.org

12, 144, 908, 5711, 32204, 181557, 1001368, 5521489, 30306759, 166323490, 911899467, 4999341631, 27402344925, 150194353126, 823189068247, 4511728088822, 24727593668449, 135525199872089, 742775009335794
Offset: 1

Views

Author

R. H. Hardin Apr 12 2011

Keywords

Comments

Column 4 of A188851

Examples

			Some solutions for 3X4
..0..1..0..1....1..0..1..1....1..1..1..1....0..1..0..1....1..0..0..0
..1..0..1..1....1..1..1..1....1..1..0..0....0..1..1..0....0..1..1..1
..0..1..0..0....1..0..1..1....1..1..0..0....0..0..0..0....0..1..1..0
		

Formula

Empirical: a(n) = 2*a(n-1) +28*a(n-2) -6*a(n-3) -237*a(n-4) -150*a(n-5) +757*a(n-6) +891*a(n-7) -942*a(n-8) -1844*a(n-9) +173*a(n-10) +1695*a(n-11) +562*a(n-12) -619*a(n-13) -422*a(n-14) +78*a(n-16) +31*a(n-17) +4*a(n-18)

A188847 Number of nX5 binary arrays without the pattern 0 0 1 vertically, antidiagonally or horizontally.

Original entry on oeis.org

20, 400, 3642, 33037, 262588, 2092409, 16242526, 126202999, 975352031, 7539816897, 58220783206, 449593483988, 3471050891991, 26798301085382, 206886553054929, 1597196554368034, 12330479552016174, 95192293994764379
Offset: 1

Views

Author

R. H. Hardin Apr 12 2011

Keywords

Comments

Column 5 of A188851

Examples

			Some solutions for 3X5
..0..1..1..0..0....1..1..1..1..0....0..1..0..0..0....1..1..0..0..0
..1..0..1..1..0....1..0..1..1..0....0..1..1..1..0....1..1..1..1..0
..1..1..0..1..0....1..1..0..0..0....0..1..1..1..0....1..0..1..1..0
		

Formula

Empirical: a(n) = 8*a(n-1) +35*a(n-2) -297*a(n-3) -469*a(n-4) +4308*a(n-5) +3697*a(n-6) -33283*a(n-7) -24463*a(n-8) +165485*a(n-9) +121961*a(n-10) -570583*a(n-11) -407968*a(n-12) +1387970*a(n-13) +918436*a(n-14) -2409610*a(n-15) -1400794*a(n-16) +3010734*a(n-17) +1406668*a(n-18) -2700212*a(n-19) -825056*a(n-20) +1696790*a(n-21) +109102*a(n-22) -684520*a(n-23) +257361*a(n-24) +104846*a(n-25) -244287*a(n-26) +68319*a(n-27) +107875*a(n-28) -55318*a(n-29) -23889*a(n-30) +18015*a(n-31) +1551*a(n-32) -2823*a(n-33) +277*a(n-34) +171*a(n-35) -36*a(n-36) for n>38

A188848 Number of nX6 binary arrays without the pattern 0 0 1 vertically, antidiagonally or horizontally.

Original entry on oeis.org

33, 1089, 14265, 185351, 2065977, 23131221, 251417066, 2738402462, 29645845119, 321142446865, 3474419918530, 37595472825962, 406698937261904, 4399741699254869, 47594496607398198, 514861267860306967
Offset: 1

Views

Author

R. H. Hardin Apr 12 2011

Keywords

Comments

Column 6 of A188851

Examples

			Some solutions for 3X6
..1..1..1..1..1..0....0..1..1..0..0..0....1..0..1..1..1..0....1..0..1..0..1..1
..0..1..0..1..1..0....1..1..1..1..1..1....1..0..1..0..1..1....1..1..0..1..0..0
..1..0..1..0..0..0....1..1..1..0..1..1....1..0..1..0..0..0....1..0..0..0..0..0
		

Formula

Empirical: a(n) = 9*a(n-1) +99*a(n-2) -707*a(n-3) -4203*a(n-4) +22165*a(n-5) +105942*a(n-6) -370199*a(n-7) -1799584*a(n-8) +3765397*a(n-9) +21168453*a(n-10) -24205909*a(n-11) -176297779*a(n-12) +93525881*a(n-13) +1067198019*a(n-14) -149413181*a(n-15) -4821078649*a(n-16) -490494925*a(n-17) +16712369275*a(n-18) +3966137410*a(n-19) -45844524838*a(n-20) -13213662476*a(n-21) +102799441964*a(n-22) +27250339183*a(n-23) -194240907465*a(n-24) -34595439879*a(n-25) +316761667077*a(n-26) +14192544418*a(n-27) -452273943570*a(n-28) +49314433804*a(n-29) +567287181257*a(n-30) -145167755646*a(n-31) -620983305673*a(n-32) +233505043748*a(n-33) +585670376841*a(n-34) -270733303775*a(n-35) -468632070694*a(n-36) +242800844739*a(n-37) +312900230062*a(n-38) -173206009080*a(n-39) -171196431111*a(n-40) +99624668654*a(n-41) +75229149578*a(n-42) -46437490099*a(n-43) -25942374035*a(n-44) +17444582263*a(n-45) +6792333900*a(n-46) -5177526557*a(n-47) -1265857033*a(n-48) +1172005576*a(n-49) +141708149*a(n-50) -191873874*a(n-51) -3039521*a(n-52) +20914032*a(n-53) -1463384*a(n-54) -1318240*a(n-55) +172652*a(n-56) +37732*a(n-57) -5792*a(n-58) -464*a(n-59) +64*a(n-60) for n>65

A188849 Number of n X 7 binary arrays without the pattern 0 0 1 vertically, antidiagonally or horizontally.

Original entry on oeis.org

54, 2916, 54914, 1020454, 16000078, 251306086, 3821933610, 58235424734, 881525407714, 13352533241696, 201974537581672, 3055674923030466, 46215972575070661, 699031443159995702, 10572425629707714942
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2011

Keywords

Comments

Column 7 of A188851.

Examples

			Some solutions for 3 X 7
..0..1..1..1..0..1..1....1..1..1..1..0..0..0....0..1..0..1..1..1..1
..1..0..1..0..1..0..1....0..1..1..1..0..1..0....1..0..1..1..1..1..1
..0..1..0..0..0..0..0....1..0..1..0..0..0..0....0..1..1..0..1..1..1
		

Crossrefs

Cf. A188851.

A188850 Number of nX8 binary arrays without the pattern 0 0 1 vertically, antidiagonally or horizontally.

Original entry on oeis.org

88, 7744, 209116, 5541360, 122025944, 2684919693, 57064872614, 1214926248918, 25687054061052, 543463513057139, 11481406014762851, 242607898257328469, 5124847724579317685, 108262802675591978034, 2286909485329724341706
Offset: 1

Views

Author

R. H. Hardin Apr 12 2011

Keywords

Comments

Column 8 of A188851

Examples

			Some solutions for 3X8
..0..1..0..1..1..1..0..0....1..0..1..0..1..1..1..1....0..1..1..1..1..0..1..0
..1..1..1..1..0..1..1..1....0..1..0..1..0..1..0..1....1..1..1..1..1..1..1..1
..0..1..1..1..0..1..1..1....1..0..1..0..1..1..1..1....0..1..1..1..1..1..1..1
		

A188852 Number of 3Xn binary arrays without the pattern 0 0 1 vertically, antidiagonally or horizontally.

Original entry on oeis.org

7, 49, 219, 908, 3642, 14265, 54914, 209116, 790202, 2970663, 11127947, 41582147, 155115627, 577944508, 2151567661, 8005167634, 29772011406, 110693241831, 411477718640, 1529360380741, 5683684052119, 21121242014609, 78485142931206
Offset: 1

Views

Author

R. H. Hardin Apr 12 2011

Keywords

Comments

Row 3 of A188851

Examples

			Some solutions for 3X3
..1..0..1....0..1..0....1..0..1....0..1..1....0..1..1....1..0..1....0..1..1
..0..1..1....0..1..1....0..1..0....1..1..1....0..0..0....0..1..1....1..0..1
..0..1..0....0..0..0....0..1..1....0..1..0....0..0..0....1..0..1....1..1..0
		

Formula

Empirical: a(n) = 6*a(n-1) +a(n-2) -53*a(n-3) +26*a(n-4) +199*a(n-5) -95*a(n-6) -408*a(n-7) +113*a(n-8) +470*a(n-9) -31*a(n-10) -286*a(n-11) -14*a(n-12) +92*a(n-13) +8*a(n-14) -15*a(n-15) -a(n-16) +a(n-17) for n>18

A188853 Number of 4Xn binary arrays without the pattern 0 0 1 vertically, antidiagonally or horizontally.

Original entry on oeis.org

12, 144, 958, 5711, 33037, 185351, 1020454, 5541360, 29819624, 159467459, 849225129, 4509414280, 23898381925, 126482308739, 668788464753, 3534016278284, 18666169109994, 98561504556257, 520314362243096
Offset: 1

Views

Author

R. H. Hardin Apr 12 2011

Keywords

Comments

Row 4 of A188851

Examples

			Some solutions for 4X3
..1..1..1....0..1..0....1..1..0....1..1..1....0..0..0....1..1..0....1..0..0
..1..0..0....1..1..0....1..0..1....1..1..0....1..1..0....1..1..0....0..1..1
..1..1..1....1..1..0....0..1..1....0..1..1....1..1..0....0..1..0....1..0..1
..1..0..1....1..1..0....1..1..1....1..0..1....0..0..0....1..0..0....0..0..0
		

Formula

Empirical: a(n) = 8*a(n-1) +15*a(n-2) -217*a(n-3) -65*a(n-4) +2637*a(n-5) +75*a(n-6) -18789*a(n-7) -1526*a(n-8) +86316*a(n-9) +19704*a(n-10) -266659*a(n-11) -102052*a(n-12) +565680*a(n-13) +288503*a(n-14) -834249*a(n-15) -499808*a(n-16) +863607*a(n-17) +561084*a(n-18) -631388*a(n-19) -421898*a(n-20) +323752*a(n-21) +217120*a(n-22) -111753*a(n-23) -77769*a(n-24) +22421*a(n-25) +19774*a(n-26) -747*a(n-27) -3667*a(n-28) -883*a(n-29) +501*a(n-30) +234*a(n-31) -46*a(n-32) -25*a(n-33) +2*a(n-34) +a(n-35) for n>38

A188854 Number of 5Xn binary arrays without the pattern 0 0 1 vertically, antidiagonally or horizontally.

Original entry on oeis.org

20, 400, 3860, 32204, 262588, 2065977, 16000078, 122025944, 922211892, 6920848521, 51700037261, 384921049976, 2859343329045, 21205878606102, 157093241661662, 1162816498531534, 8602424081844841, 63614642982706249
Offset: 1

Views

Author

R. H. Hardin Apr 12 2011

Keywords

Comments

Row 5 of A188851

Examples

			Some solutions for 5X3
..0..1..1....0..1..0....1..1..1....1..0..1....1..1..0....0..0..0....0..0..0
..1..1..1....1..1..1....1..1..0....0..1..0....1..0..1....1..1..1....1..1..1
..1..1..0....1..0..1....1..1..1....1..0..1....0..1..0....0..1..0....1..0..0
..1..0..0....0..1..0....1..0..1....0..1..0....0..0..0....1..0..0....1..1..1
..0..1..0....1..1..1....1..1..0....0..1..1....0..1..0....0..1..0....0..1..1
		

Formula

Empirical: a(n) = 14*a(n-1) +12*a(n-2) -869*a(n-3) +1315*a(n-4) +25339*a(n-5) -55704*a(n-6) -466536*a(n-7) +1104069*a(n-8) +6123144*a(n-9) -13871452*a(n-10) -60905308*a(n-11) +122840856*a(n-12) +473902055*a(n-13) -810705818*a(n-14) -2932504534*a(n-15) +4131855019*a(n-16) +14571427067*a(n-17) -16696287227*a(n-18) -58561243631*a(n-19) +54702515236*a(n-20) +191588731358*a(n-21) -148452953569*a(n-22) -513291220886*a(n-23) +340859242431*a(n-24) +1131765472611*a(n-25) -675017422947*a(n-26) -2060462245934*a(n-27) +1167999276063*a(n-28) +3099080394556*a(n-29) -1770250494282*a(n-30) -3837665043366*a(n-31) +2329323672403*a(n-32) +3875748540760*a(n-33) -2614929879690*a(n-34) -3130743870873*a(n-35) +2448428133991*a(n-36) +1944185589624*a(n-37) -1860043238075*a(n-38) -842724478681*a(n-39) +1103495474142*a(n-40) +167817486381*a(n-41) -476717517573*a(n-42) +78582422599*a(n-43) +121853141835*a(n-44) -91254459222*a(n-45) +5768288867*a(n-46) +46035625299*a(n-47) -22656845337*a(n-48) -15248405057*a(n-49) +12059870046*a(n-50) +3756383370*a(n-51) -3920799304*a(n-52) -833927678*a(n-53) +900771854*a(n-54) +215654330*a(n-55) -155066412*a(n-56) -61762189*a(n-57) +21214719*a(n-58) +15278566*a(n-59) -2522154*a(n-60) -2885183*a(n-61) +283792*a(n-62) +399816*a(n-63) -29377*a(n-64) -39473*a(n-65) +2394*a(n-66) +2636*a(n-67) -125*a(n-68) -107*a(n-69) +3*a(n-70) +2*a(n-71) for n>74
Showing 1-10 of 13 results. Next