This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A188860 #13 Mar 30 2017 16:23:17 %S A188860 1,2,7,26,95,340,1193,4116,14001,47064,156629,516844,1693073,5511218, %T A188860 17841247,57477542,184377699,589195584,1876395357,5957318820, %U A188860 18861068265,59563612974,187668462027,590039959434,1851508693479,5799494052414,18135645594003 %N A188860 Number of n X n binary arrays without the pattern 0 1 diagonally, vertically or antidiagonally. %C A188860 Diagonal of A188866. %H A188860 Alois P. Heinz, <a href="/A188860/b188860.txt">Table of n, a(n) for n = 0..2000</a> (terms n = 1..32 from R. H. Hardin) %F A188860 G.f.: (3*x^2-3*x+1-x*sqrt(1-3*x^2-2*x))/(1-3*x)^2. - _Alois P. Heinz_, Mar 30 2017 %e A188860 Some solutions for 3X3 %e A188860 ..1..1..1....0..0..0....1..1..1....1..1..1....1..1..0....1..1..1....1..1..1 %e A188860 ..1..1..1....0..0..0....1..1..1....1..0..0....0..0..0....1..1..1....1..1..1 %e A188860 ..1..1..0....0..0..0....1..0..0....0..0..0....0..0..0....1..0..1....0..0..0 %p A188860 a:= proc(n) option remember; `if`(n<3, (2*n-1)*n+1, %p A188860 ((10*n^2-49*n+33)*a(n-1)-(6*n^2-9*n-33)*a(n-2) %p A188860 -(9*(n-3))*(2*n-7)*a(n-3))/((n-1)*(2*n-9))) %p A188860 end: %p A188860 seq(a(n), n=0..35); # _Alois P. Heinz_, Mar 30 2017 %Y A188860 Cf. A188866. %K A188860 nonn %O A188860 0,2 %A A188860 _R. H. Hardin_, Apr 12 2011 %E A188860 a(0)=1 prepended by _Alois P. Heinz_, Mar 30 2017