A188863 Number of n X 6 binary arrays without the pattern 0 1 diagonally, vertically or antidiagonally.
64, 239, 466, 707, 950, 1193, 1436, 1679, 1922, 2165, 2408, 2651, 2894, 3137, 3380, 3623, 3866, 4109, 4352, 4595, 4838, 5081, 5324, 5567, 5810, 6053, 6296, 6539, 6782, 7025, 7268, 7511, 7754, 7997, 8240, 8483, 8726, 8969, 9212, 9455, 9698, 9941, 10184
Offset: 1
Keywords
Examples
Some solutions for 3 X 6: ..1..1..1..0..1..1....1..0..0..0..0..0....1..1..1..1..1..0....1..1..1..1..1..1 ..0..0..0..0..0..0....0..0..0..0..0..0....1..0..1..0..0..0....0..1..1..1..1..1 ..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A188866.
Formula
Empirical: a(n) = 243*n - 265 for n>3.
Empirical g.f.: x*(64 + 111*x + 52*x^2 + 14*x^3 + 2*x^4) / (1 - x)^2. - Colin Barker, May 01 2018
Comments