A188865 Number of n X 8 binary arrays without the pattern 0 1 diagonally, vertically or antidiagonally.
256, 1393, 3194, 5275, 7442, 9627, 11814, 14001, 16188, 18375, 20562, 22749, 24936, 27123, 29310, 31497, 33684, 35871, 38058, 40245, 42432, 44619, 46806, 48993, 51180, 53367, 55554, 57741, 59928, 62115, 64302, 66489, 68676, 70863, 73050, 75237, 77424
Offset: 1
Keywords
Examples
Some solutions for 3 X 8: ..1..1..1..1..1..1..1..1....1..1..1..1..1..1..1..1....1..1..0..1..1..1..1..1 ..1..1..1..1..1..1..1..1....1..1..1..1..1..1..1..1....0..0..0..0..1..1..1..1 ..0..0..0..0..1..1..1..0....0..0..1..0..1..1..1..0....0..0..0..0..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A188866.
Formula
Empirical: a(n) = 2187*n - 3495 for n>5.
Conjectures from Colin Barker, Feb 28 2018: (Start)
G.f.: x*(256 + 881*x + 664*x^2 + 280*x^3 + 86*x^4 + 18*x^5 + 2*x^6) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>7.
(End)
Comments