cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188881 Triangle of coefficients arising from an expansion of Integral( exp(exp(exp(x))), dx).

This page as a plain text file.
%I A188881 #59 Jul 14 2025 08:17:24
%S A188881 1,1,1,2,3,2,6,11,12,6,24,50,70,60,24,120,274,450,510,360,120,720,
%T A188881 1764,3248,4410,4200,2520,720,5040,13068,26264,40614,47040,38640,
%U A188881 20160,5040,40320,109584,236248,403704,538776,544320,393120,181440,40320
%N A188881 Triangle of coefficients arising from an expansion of Integral( exp(exp(exp(x))), dx).
%C A188881 Also the coefficients of the polynomials which are generated by the exponential generating function -log(1 + x*log(1 - t)). The polynomials might be called 'logarithmic polynomials'. Note also A003713, and A263634 for a different use of this term. See the paper of F. Qi for a related, but different family of polynomials. - _Peter Luschny_, Jul 11 2020
%C A188881 Edgar remarks that these coefficients are related to Stirling numbers of the second kind (cf. A008277).
%C A188881 The first column and the main diagonal are the factorials (A000142). The n-th entry on the first subdiagonal is A001710(n+1). The second column is A000254, the third column is 2*A000399, and the fourth column is 6*A000454. In general, the k-th column is (k-1)!*s(n,k), where s(n,k) is the unsigned Stirling number of the first kind. - _Nathaniel Johnston_, Apr 15 2011
%C A188881 With offset n=0, k=0 : triangle T(n,k), read by rows,given by T(n,k) = k*T(n-1, k-1) + n*T(n-1, k) with T(0, 0) = 1. - _Philippe Deléham_, Oct 04 2011
%H A188881 Nathaniel Johnston, <a href="/A188881/b188881.txt">Table of n, a(n) for n = 1..2500</a>
%H A188881 G. A. Edgar, <a href="http://arxiv.org/abs/0801.4877">Transseries for beginners</a>, arXiv:0801.4877 [math.RA], 2008-2009.
%H A188881 F. Qi, <a href="https://doi.org/10.1016/j.indag.2018.04.002">On multivariate logarithmic polynomials and their properties</a>, Indagationes Mathematicae (2018).
%H A188881 Wikipedia, <a href="http://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind">Stirling numbers of the first kind</a>
%F A188881 T(n, k) = (k-1)!*Sum_{i=0..k}(Stirling2(i,k)*(-1)^(n-i)*Stirling1(n,i)) =
%F A188881 T(n, k) = Sum_{i=0..k}(W(i,k)*(-1)^(n-i)*Stirling1(n,i)), where W(n,k) is the Worpitzky triangle A028246. - _Vladimir Kruchinin_, Apr 17 2015.
%F A188881 T(n,k) = [x^k] n!*[t^n](-log(1 + x*log(1 - t))). - _Peter Luschny_, Jul 10 2020
%F A188881 T(n,k) = Sum_{m=0..n-k} abs(Stirling1(n-1,m+k-1))*(k+m-1)!/m!. - _Vladimir Kruchinin_, Jul 14 2025
%e A188881 Triangle begins:
%e A188881 1
%e A188881 1    1
%e A188881 2    3    2
%e A188881 6    11   12   6
%e A188881 24   50   70   60   24
%e A188881 120  274  450  510  360  120
%e A188881 ...
%p A188881 S:=proc(n,k)global s:if(n=0 and k=0)then s[0,0]:=1:elif(n=0 or k=0)then s[n,k]:=0:elif(not type(s[n,k],integer))then s[n,k]:=(n-1)*S(n-1,k)+S(n-1,k-1):fi:return s[n,k]:end:
%p A188881 T:=proc(n,k)return (k-1)!*S(n,k);end:
%p A188881 for n from 1 to 6 do for k from 1 to n do print(T(n,k)):od:od: # _Nathaniel Johnston_, Apr 15 2011
%p A188881 # With offset n = 0, k = 0:
%p A188881 A188881 := (n, k) -> k!*abs(Stirling1(n+1, k+1)):
%p A188881 seq(seq(A188881(n,k), k=0..n), n=0..8); # _Peter Luschny_, Oct 19 2017
%p A188881 # Alternative:
%p A188881 gf := -log(1 + x*log(1 - t)): ser := series(gf, t, 18):
%p A188881 toeff := n -> n!*expand(coeff(ser, t, n)):
%p A188881 seq(print(seq(coeff(toeff(n), x, k), k=1..n)), n=1..8); # _Peter Luschny_, Jul 10 2020
%t A188881 Table[(k - 1)! * Sum[StirlingS2[i, k] * (-1)^(n - i) * StirlingS1[n, i], {i, 0, k}], {n, 9}, {k, n}] // Flatten (* _Michael De Vlieger_, Apr 17 2015 *)
%o A188881 (Maxima)
%o A188881 T(n,k):=(k-1)!*sum(stirling2(i,k)*(-1)^(n-i)*stirling1(n,i),i,0,k); /* _Vladimir Kruchinin_, Apr 17 2015 */
%o A188881 (PARI) {T(n, k) = if( k<1 || k>n, 0, (n-1)! * polcoeff( (x / (1 - exp(-x * (1 + x * O(x^n)))))^n, n-k))}; /* _Michael Somos_, May 10 2017 */
%o A188881 (PARI) {T(n, k) = if( k<1 || n<0, 0, (k-1)! * sum(i=0, k, stirling(i, k, 2) * (-1)^(n-i) * stirling(n, i, 1)))}; /* _Michael Somos_, May 10 2017 */
%Y A188881 Cf. A277408, A003713, A263634.
%K A188881 nonn,tabl
%O A188881 1,4
%A A188881 _N. J. A. Sloane_, Apr 14 2011
%E A188881 a(11)-a(45) from _Nathaniel Johnston_, Apr 15 2011