This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A188884 #17 May 02 2025 18:24:15 %S A188884 1,2,1,2,1,1,3,1,1,5,1,7,1,1,23,2,2,4,3,1,11,158,1,1,1,1,4,2,1,6,2,19, %T A188884 75,1,1,1,28,1,29,6,8,1,5,1,4,2,1,8,1,1,19,1,1,9,2,2,3,1,2,11,1,1,3,1, %U A188884 1,4,169,1,1,2,1,3,1,1,10,2,1,3,8,2,4,8,5,1,8,1,7,1,1,1,1,4,38,1,5,1,43,1,1,1,1,2,1,8,1,20,1,1,1,2,13,51,2,21,1,2,5,1,1,1 %N A188884 Continued fraction of (1 + sqrt(1 + Pi^2))/Pi. %C A188884 For a geometric interpretation, see A188640 and A188883. %e A188884 (1 + sqrt(1 + Pi^2))/Pi = [1, 2, 1, 2, 1, 1, 3, 1, 1, 5, 1, 7, 1, 1, 23, 2, ...]. %t A188884 r = 2/Pi; t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t] %t A188884 N[t, 130] %t A188884 RealDigits[N[t, 130]][[1]] %t A188884 ContinuedFraction[t, 120] %t A188884 ContinuedFraction[(1+Sqrt[1+Pi^2])/Pi,120] (* _Harvey P. Dale_, May 02 2025 *) %Y A188884 Cf. A188640, A188883 (decimal expansion), A188726. %K A188884 nonn,cofr %O A188884 0,2 %A A188884 _Clark Kimberling_, Apr 12 2011 %E A188884 Offset changed by _Andrew Howroyd_, Jul 07 2024