This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A188919 #33 Dec 28 2018 15:33:36 %S A188919 1,1,1,1,1,1,2,1,1,1,2,4,3,3,1,1,1,2,4,7,8,9,9,6,4,1,1,1,2,4,7,13,16, %T A188919 22,26,29,26,23,17,10,5,1,1,1,2,4,7,13,22,31,44,60,74,89,95,98,93,82, %U A188919 63,47,29,15,6,1,1,1,2,4,7,13,22,38,55,83,116,160,207,259,304,347,375,386,378,348,304,249,190,131,85,46,21,7,1 %N A188919 Triangle read by rows: T(n,k) = number of permutations of length n with k inversions that avoid the "dashed pattern" 1-32. %C A188919 Row n has length 1 + binomial(n,2) and sum A000110(n) (a Bell number). %H A188919 Alois P. Heinz, <a href="/A188919/b188919.txt">Rows n = 0..50, flattened</a> %H A188919 A. M. Baxter, <a href="https://pdfs.semanticscholar.org/2c5d/79e361d3aecb25c380402144177ad7cd9dc8.pdf">Algorithms for Permutation Statistics</a>, Ph. D. Dissertation, Rutgers University, May 2011. %H A188919 Andrew Baxter, <a href="/A188919/a188919.txt">Additional terms, formatted as a table.</a> %H A188919 Andrew M. Baxter and Lara K. Pudwell, <a href="http://arxiv.org/abs/1108.2642">Enumeration schemes for dashed patterns</a>, arXiv preprint arXiv:1108.2642, 2011 %H A188919 Jean-Christophe Novelli, Jean-Yves Thibon, Frédéric Toumazet, <a href="https://arxiv.org/abs/1705.08113">Noncommutative Bell polynomials and the dual immaculate basis</a>, arXiv:1705.08113 [math.CO], 2017. %e A188919 Triangle begins: %e A188919 1 %e A188919 1 %e A188919 1 1 %e A188919 1 1 2 1 %e A188919 1 1 2 4 3 3 1 %e A188919 1 1 2 4 7 8 9 9 6 4 1 %e A188919 ... %p A188919 b:= proc(u, o) option remember; expand(`if`(u+o=0, 1, %p A188919 add(b(u-j, o+j-1)*x^(o+j-1), j=1..u)+ %p A188919 add(`if`(u=0, b(u+j-1, o-j)*x^(o-j), 0), j=1..o))) %p A188919 end: %p A188919 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(0, n)): %p A188919 seq(T(n), n=0..10); # _Alois P. Heinz_, Nov 14 2015 %t A188919 b[u_, o_] := b[u, o] = Expand[If[u+o == 0, 1, Sum[b[u-j, o+j-1]* x^(o+j-1), {j, 1, u}] + Sum[If[u == 0, b[u+j-1, o-j]*x^(o-j), 0], {j, 1, o}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}] ][b[0, n]]; Table[T[n], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Feb 01 2016, after _Alois P. Heinz_ *) %Y A188919 The column limits are given by A188920. %Y A188919 Cf. A000110, A161680. %K A188919 nonn,tabf %O A188919 0,7 %A A188919 _N. J. A. Sloane_, Apr 13 2011 %E A188919 More terms from _Andrew Baxter_, May 17 2011.