cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188994 Number of 4 X n binary arrays without the pattern 0 0 1 antidiagonally or horizontally.

Original entry on oeis.org

16, 256, 1793, 10812, 68064, 423606, 2613530, 16035624, 97883197, 595766564, 3617770796, 21938495472, 132905120076, 804648760664, 4869522949489, 29461013798230, 178208981945456, 1077853513894740, 6518619188201742
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2011

Keywords

Comments

Row 4 of A188992.

Examples

			Some solutions for 4 X 3
..1..1..1....1..0..0....1..0..0....0..1..0....0..1..0....1..0..1....1..0..1
..1..1..1....1..0..1....0..1..0....0..1..1....1..1..0....1..1..0....1..0..0
..1..1..0....0..1..1....1..1..1....1..1..0....1..1..0....1..1..0....1..0..1
..1..0..1....0..0..0....1..1..1....1..1..0....1..0..0....1..0..0....0..1..1
		

Crossrefs

Cf. A188992.

Formula

Empirical: a(n) = 13*a(n-1) -24*a(n-2) -309*a(n-3) +1139*a(n-4) +2904*a(n-5) -15708*a(n-6) -13388*a(n-7) +114908*a(n-8) +27510*a(n-9) -517862*a(n-10) +10696*a(n-11) +1525375*a(n-12) -199987*a(n-13) -2999240*a(n-14) +537335*a(n-15) +3938119*a(n-16) -825688*a(n-17) -3403810*a(n-18) +826898*a(n-19) +1870596*a(n-20) -531896*a(n-21) -607828*a(n-22) +201144*a(n-23) +99904*a(n-24) -37536*a(n-25) -5568*a(n-26) +2304*a(n-27) for n>30.