This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A188995 #7 Jul 22 2025 11:31:19 %S A188995 32,1024,10871,92532,852448,7844188,72609144,669102268,6148530729, %T A188995 56342169330,515230781644,4705003935324,42922221924060, %U A188995 391310478485712,3565871249163397,32485016339270612,295879583057259120 %N A188995 Number of 5Xn binary arrays without the pattern 0 0 1 antidiagonally or horizontally. %C A188995 Row 5 of A188992 %H A188995 R. H. Hardin, <a href="/A188995/b188995.txt">Table of n, a(n) for n = 1..200</a> %F A188995 Empirical: a(n) = 20*a(n-1) -26*a(n-2) -1758*a(n-3) +7884*a(n-4) +69274*a(n-5) -440875*a(n-6) -1621492*a(n-7) +13507948*a(n-8) +25172384*a(n-9) -274917184*a(n-10) -273994660*a(n-11) +4038604814*a(n-12) +2157309576*a(n-13) -44826838556*a(n-14) -12545085244*a(n-15) +386651971080*a(n-16) +55249249320*a(n-17) -2639477921890*a(n-18) -195034819700*a(n-19) +14437532484176*a(n-20) +622120688000*a(n-21) -63821395536740*a(n-22) -2013563540828*a(n-23) +229387235684075*a(n-24) +6204228280560*a(n-25) -673213717187734*a(n-26) -14708924451038*a(n-27) +1617830574782760*a(n-28) +18364193960110*a(n-29) -3187974181676823*a(n-30) +21749633597584*a(n-31) +5150273262854584*a(n-32) -172238338938872*a(n-33) -6807831142607116*a(n-34) +463812469077896*a(n-35) +7331518683699720*a(n-36) -804366669640684*a(n-37) -6387203643788164*a(n-38) +999955565998504*a(n-39) +4454231927925748*a(n-40) -921340393703952*a(n-41) -2449638785292204*a(n-42) +634177858926408*a(n-43) +1040892123443180*a(n-44) -324105066755064*a(n-45) -332359344974592*a(n-46) +120879015719960*a(n-47) +76775348266832*a(n-48) -31968235223312*a(n-49) -12165551078160*a(n-50) +5739648120864*a(n-51) +1221284783808*a(n-52) -653996805120*a(n-53) -67873787136*a(n-54) +42028015104*a(n-55) +1538030592*a(n-56) -1149603840*a(n-57) for n>61 %e A188995 Some solutions for 5X3 %e A188995 ..1..1..0....0..1..0....1..0..1....1..1..0....0..1..1....1..0..1....0..1..0 %e A188995 ..1..0..1....0..1..1....0..1..1....1..1..0....0..1..1....0..1..1....0..1..1 %e A188995 ..0..0..0....1..1..1....0..1..1....0..1..1....1..1..0....0..1..1....1..0..1 %e A188995 ..1..1..0....1..1..1....1..0..1....0..1..0....1..1..1....1..0..1....1..1..0 %e A188995 ..0..1..0....1..1..1....1..1..1....1..1..1....1..0..0....0..1..0....1..0..0 %K A188995 nonn %O A188995 1,1 %A A188995 _R. H. Hardin_ Apr 15 2011