This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A189006 #32 Feb 16 2025 08:33:14 %S A189006 1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,3,3,1,1,1,1,5,4,5,1,1,1,1,8,11,11, %T A189006 8,1,1,1,1,13,15,36,15,13,1,1,1,1,21,41,95,95,41,21,1,1,1,1,34,56,281, %U A189006 192,281,56,34,1,1,1,1,55,153,781,1183,1183,781,153,55,1,1,1,1,89,209,2245,2415,6728,2415,2245,209,89,1,1 %N A189006 Array A(m,n) read by antidiagonals: number of domino tilings of the m X n grid with upper left corner removed iff m*n is odd, (m>=0, n>=0). %H A189006 Alois P. Heinz, <a href="/A189006/b189006.txt">Antidiagonals n = 0..75, flattened</a> %H A189006 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PerfectMatching.html">Perfect Matching</a> %H A189006 Wikipedia, <a href="https://en.wikipedia.org/wiki/FKT_algorithm">FKT algorithm</a> %H A189006 Wikipedia, <a href="https://en.wikipedia.org/wiki/Matching_(graph_theory)">Matching (graph theory)</a> %H A189006 <a href="/index/Do#domino">Index entries for sequences related to dominoes</a> %e A189006 A(3,3) = 4, because there are 4 domino tilings of the 3 X 3 grid with upper left corner removed: %e A189006 . .___. . .___. . .___. . .___. %e A189006 ._|___| ._|___| ._| | | ._|___| %e A189006 | |___| | | | | | |_|_| |___| | %e A189006 |_|___| |_|_|_| |_|___| |___|_| %e A189006 Array begins: %e A189006 1, 1, 1, 1, 1, 1, 1, ... %e A189006 1, 1, 1, 1, 1, 1, 1, ... %e A189006 1, 1, 2, 3, 5, 8, 13, ... %e A189006 1, 1, 3, 4, 11, 15, 41, ... %e A189006 1, 1, 5, 11, 36, 95, 281, ... %e A189006 1, 1, 8, 15, 95, 192, 1183, ... %e A189006 1, 1, 13, 41, 281, 1183, 6728, ... %p A189006 with(LinearAlgebra): %p A189006 A:= proc(m, n) option remember; local i, j, s, t, M; %p A189006 if m=0 or n=0 then 1 %p A189006 elif m<n then A(n, m) %p A189006 else s:= irem(n*m, 2); %p A189006 M:= Matrix(n*m-s, shape=skewsymmetric); %p A189006 for i to n do %p A189006 for j to m do %p A189006 t:= (i-1)*m+j-s; %p A189006 if i>1 or j>1 or s=0 then %p A189006 if j<m then M[t, t+1]:= 1 fi; %p A189006 if i<n then M[t, t+m]:= 1-2*irem(j, 2) fi %p A189006 fi %p A189006 od %p A189006 od; %p A189006 isqrt(Determinant(M)) %p A189006 fi %p A189006 end: %p A189006 seq(seq(A(m, d-m), m=0..d), d=0..15); %t A189006 A[1, 1] = 1; A[m_, n_] := A[m, n] = Module[{i, j, s, t, M}, Which[m == 0 || n == 0, 1, m < n, A[n, m], True, s = Mod[n*m, 2];M[i_, j_] /; j < i := -M[j, i]; M[_, _] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i-1)*m+j-s; If[i > 1 || j > 1 || s == 0, If[j < m, M[t, t+1] = 1]; If[i < n, M[t, t+m] = 1-2*Mod[j, 2]]]]]; Sqrt[Det[Array[M, {n*m-s, n*m-s}]]]]]; Table[Table[A[m, d-m], {m, 0, d}], {d, 0, 15}] // Flatten (* _Jean-François Alcover_, Dec 26 2013, translated from Maple *) %Y A189006 Rows m=0+1, 2-12 give: A000012, A000045(n+1), A002530(n+1), A005178(n+1), A189003, A028468, A189004, A028470, A189005, A028472, A210724, A028474. %Y A189006 Main diagonal gives: A189002. %Y A189006 Cf. A099390, A187596, A187616, A187617, A187618, A004003. %K A189006 nonn,tabl %O A189006 0,13 %A A189006 _Alois P. Heinz_, Apr 15 2011