cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189052 a(n) is the number of inversions in all compositions of n.

This page as a plain text file.
%I A189052 #56 Jul 03 2020 19:09:32
%S A189052 0,0,0,1,4,14,42,118,314,806,2010,4902,11738,27686,64474,148518,
%T A189052 338906,767014,1723354,3847206,8539098,18854950,41438170,90682406,
%U A189052 197675994,429372454,929582042,2006430758,4318579674,9270965286,19854281690,42422744102,90452806618,192478164006
%N A189052 a(n) is the number of inversions in all compositions of n.
%C A189052 Row sums of triangle in A189073.
%H A189052 Nathaniel Johnston, <a href="/A189052/b189052.txt">Table of n, a(n) for n = 0..1000</a>
%H A189052 M. Archibald, A. Blecher, A. Knopfmacher, M. E. Mays, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Archibald/arch3.html">Inversions and Parity in Compositions of Integers</a>, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
%H A189052 S. Heubach, A. Knopfmacher, M. E. Mays and A. Munagi, <a href="https://www.researchgate.net/publication/228671252_Inversions_in_compositions_of_integers">Inversions in Compositions of Integers</a>, Quaest. Math. 34 (2011), no. 2, 187-202.
%H A189052 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (5,-6,-4,8)
%F A189052 a(n) = 2^(n-1)*(1/24*(n+2)*(n+1)-5/36*(n+1)-5/108)-2/27*(-1)^n for n>0.
%F A189052 a(n) = +5*a(n-1) -6*a(n-2) -4*a(n-3) +8*a(n-4).
%F A189052 G.f.: x^3*(1-x)/((1+x)*(1-2*x)^3).
%e A189052 a(4)=4. There are eight compositions of 4.  Five of these (the partitions of 4) have no inversions.  The remaining three: 3+1, 2+1+1, 1+2+1 have 1,2,1 inversions respectively. - _Geoffrey Critzer_, Mar 19 2014
%p A189052 with(PolynomialTools):n:=33:taypoly:=taylor(x^3*(1-x)/((1+x)*(1-2*x)^3),x=0,n+1):seq(coeff(taypoly,x,m),m=0..n); # _Nathaniel Johnston_, Apr 17 2011
%p A189052 # second Maple program:
%p A189052 a:= n-> `if`(n=0, 0, (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>,
%p A189052              <8|-4|-6|5>>^n. <<-1/8, 0, 0, 1>>)[1, 1]):
%p A189052 seq(a(n), n=0..40);  # _Alois P. Heinz_, Apr 04 2016
%t A189052 nn=30;CoefficientList[Series[(1-x)*x^3/((1+x)*(1-x-x)^3),{x,0,nn}],x] (* _Geoffrey Critzer_, Mar 19 2014 *)
%t A189052 LinearRecurrence[{5,-6,-4,8},{0,0,0,1,4},40] (* _Harvey P. Dale_, May 25 2016 *)
%o A189052 (PARI)  A189052(n)=2^(n-1)*(1/24*(n+2)*(n+1)-5/36*(n+1)-5/108)-2/27*(-1)^n;
%o A189052 vector(33,n,A189052(n)) /* show terms */ /* _Joerg Arndt_, Apr 16 2011 */
%Y A189052 Cf. A264082, A271370, A271372.
%Y A189052 Cf. A189073.
%K A189052 nonn,easy
%O A189052 0,5
%A A189052 _N. J. A. Sloane_, Apr 16 2011