cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189059 Number of n X 4 binary arrays without the pattern 0 1 0 antidiagonally or horizontally.

Original entry on oeis.org

12, 144, 1404, 13452, 128628, 1228512, 11733712, 112065936, 1070316016, 10222334864, 97631091776, 932451368576, 8905621502912, 85055475378112, 812344639697216, 7758510674743296, 74099692358173440, 707708558738821376
Offset: 1

Views

Author

R. H. Hardin, Apr 16 2011

Keywords

Comments

Column 4 of A189064.

Examples

			Some solutions for 3 X 4:
..1..0..0..0....1..0..0..1....0..1..1..0....0..0..0..0....0..1..1..0
..0..0..0..0....0..0..1..1....0..0..0..1....1..0..0..0....1..1..0..0
..1..1..0..0....1..1..0..0....0..0..1..1....1..1..0..1....1..0..1..1
		

Crossrefs

Cf. A189064.

Formula

Empirical: a(n) = 12*a(n-1) -20*a(n-2) -40*a(n-3) +64*a(n-4) +100*a(n-5) -176*a(n-6) +64*a(n-7).
Empirical g.f.: 4*x*(3 - 21*x^2 - 9*x^3 + 69*x^4 - 60*x^5 + 16*x^6) / (1 - 12*x + 20*x^2 + 40*x^3 - 64*x^4 - 100*x^5 + 176*x^6 - 64*x^7). - Colin Barker, May 01 2018