cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189066 Number of 4Xn binary arrays without the pattern 0 1 0 antidiagonally or horizontally.

This page as a plain text file.
%I A189066 #7 Jul 22 2025 11:32:27
%S A189066 16,256,2032,13452,99721,795741,6254245,48152625,370592973,2865971562,
%T A189066 22186038788,171581957421,1326434442623,10255698509420,79304524508802,
%U A189066 613232220011159,4741748954099224,36664951063937325,283508828799113387
%N A189066 Number of 4Xn binary arrays without the pattern 0 1 0 antidiagonally or horizontally.
%C A189066 Row 4 of A189064
%H A189066 R. H. Hardin, <a href="/A189066/b189066.txt">Table of n, a(n) for n = 1..200</a>
%F A189066 Empirical: a(n) = 10*a(n-1) -45*a(n-2) +228*a(n-3) -188*a(n-4) +150*a(n-5) +4626*a(n-6) -13376*a(n-7) -1649*a(n-8) +19848*a(n-9) -231951*a(n-10) +230746*a(n-11) +963441*a(n-12) -827010*a(n-13) +1774159*a(n-14) +1058496*a(n-15) -21494685*a(n-16) -4610158*a(n-17) +53081097*a(n-18) +19366638*a(n-19) -25517799*a(n-20) -22610518*a(n-21) -88873155*a(n-22) -23222754*a(n-23) +102366795*a(n-24) +51332664*a(n-25) +73408782*a(n-26) +14377760*a(n-27) -114904736*a(n-28) -46363458*a(n-29) -54868807*a(n-30) -10844130*a(n-31) +63311244*a(n-32) +17975200*a(n-33) +37011575*a(n-34) +4067316*a(n-35) -10427306*a(n-36) -3018706*a(n-37) -9120314*a(n-38) -334102*a(n-39) +409405*a(n-40) +270332*a(n-41) +950100*a(n-42) -1882*a(n-43) -3011*a(n-44) -8422*a(n-45) -42197*a(n-46) +416*a(n-47) +1220*a(n-48) +32*a(n-49) +688*a(n-50) -48*a(n-52)
%e A189066 Some solutions for 4X3
%e A189066 ..1..0..1....1..0..1....0..0..0....0..0..1....0..1..1....0..1..1....0..0..0
%e A189066 ..1..0..1....1..1..0....0..0..1....0..0..1....1..1..0....0..1..1....0..0..1
%e A189066 ..1..1..0....0..0..1....1..1..1....1..0..1....1..1..0....1..1..1....0..1..1
%e A189066 ..1..1..0....0..0..0....0..1..1....0..1..1....1..0..0....1..1..0....1..1..1
%K A189066 nonn
%O A189066 1,1
%A A189066 _R. H. Hardin_ Apr 16 2011