cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189145 Number of n X 2 array permutations with each element making zero or one knight moves.

Original entry on oeis.org

1, 1, 4, 16, 36, 81, 225, 625, 1600, 4096, 10816, 28561, 74529, 194481, 509796, 1336336, 3496900, 9150625, 23961025, 62742241, 164249856, 429981696, 1125736704, 2947295521, 7716041281, 20200652641, 52886200900, 138458410000
Offset: 1

Views

Author

R. H. Hardin, Apr 17 2011

Keywords

Comments

Column 2 of A189150.
a(n+2) is number of ways to place k non-attacking knights on a 2 x n board, sum over all k>=0.

Examples

			All solutions for 3X2
..0..1....0..4....5..1....5..4
..2..3....2..3....2..3....2..3
..4..5....1..5....4..0....1..0
		

Programs

  • Mathematica
    Table[FullSimplify[LucasL[2n+4]/25 + (3*Fibonacci[n+1] + Fibonacci[n]) * (2*Cos[(Pi*n)/2] + Sin[(Pi*n)/2])*2/25 + 7*(-1)^n/50 + 1/10], {n,1,20}] (* Vaclav Kotesovec, Nov 07 2011 *)

Formula

Empirical: a(n) = 3*a(n-1) -3*a(n-2) +6*a(n-3) -6*a(n-5) +3*a(n-6) -3*a(n-7) +a(n-8).
Empirical: G.f. -x*(1-2*x+4*x^2+x^3+3*x^5+x^7-6*x^4-3*x^6) / ( (x-1)*(1+x)*(x^2-3*x+1)*(x^4+3*x^2+1) ). - R. J. Mathar, Oct 15 2011
Explicit formula: ((3+sqrt(5))/2)^(n+2)/25 + ((3-sqrt(5))/2)^(n+2)/25 + (((sqrt(5)+1)/2)^(n+2) + ((sqrt(5)-1)/2)^(n+2))*4*cos((Pi*n)/2)/25 + (((sqrt(5)+1)/2)^(n+2) - ((sqrt(5)-1)/2)^(n+2))*2*sin((Pi*n)/2)/25 + 1/10 + 7/50*(-1)^n. - Vaclav Kotesovec, Nov 07 2011