cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189146 Number of n X 3 array permutations with each element making zero or one knight moves.

Original entry on oeis.org

1, 4, 49, 569, 4372, 42689, 412189, 3988132, 38271921, 375573977, 3665309372, 35872284105, 350949375581, 3439343559628, 33682318930233, 330021363385529, 3233215326749252, 31680809629578289, 310402921706993341
Offset: 1

Views

Author

R. H. Hardin, Apr 17 2011

Keywords

Comments

Column 3 of A189150.

Examples

			Some solutions for 4 X 3:
..0..8..3....0..1..2....0..1..7....0..8..7....5..1..2....0..1..7....7..6..3
..2..9..6....8.11.10....3..4..6....3..9.10....8..9..0....8..4..5....2..4.10
..5..7..1....6..7..3....5..2..9...11..2..1....6..7..3...11..2..3....1..0..9
..4.10.11....9..5..4....8.10.11....4..5..6....4.10.11....9.10..6....8..5.11
		

Formula

Empirical: a(n) = 9*a(n-1) +48*a(n-2) -371*a(n-3) +173*a(n-4) -4636*a(n-5) -21700*a(n-6) +321034*a(n-7) -261016*a(n-8) -939316*a(n-9) +8804712*a(n-10) -89239632*a(n-11) +89709648*a(n-12) +830637056*a(n-13) -2499914752*a(n-14) +6390654336*a(n-15) -987233536*a(n-16) -98495866880*a(n-17) +227291122176*a(n-18) -22499119616*a(n-19) -574642074624*a(n-20) +4090433287168*a(n-21) -8710999644160*a(n-22) -9262792159232*a(n-23) +33961426997248*a(n-24) -59705619185664*a(n-25) +164268932415488*a(n-26) +206996041138176*a(n-27) -959952477028352*a(n-28) +148261211865088*a(n-29) +225201818959872*a(n-30) -528765464084480*a(n-31) +2794884482203648*a(n-32) +3264721555816448*a(n-33) +9397359024799744*a(n-34) -32363504358916096*a(n-35) -14560459025809408*a(n-36) +41205664512475136*a(n-37) -65070379105779712*a(n-38) +117763114509795328*a(n-39) -26803976066301952*a(n-40) +132124530591137792*a(n-41) +236469835482005504*a(n-42) -1308758689225637888*a(n-43) +382298681149227008*a(n-44) +1688786500906385408*a(n-45) -1092767223451222016*a(n-46) -1774519408253730816*a(n-47) +3781671287689052160*a(n-48) -211699968811991040*a(n-49) -6414401302863806464*a(n-50) +3737846953229156352*a(n-51) +2510967898491584512*a(n-52) +740560663725735936*a(n-53) -4415779434636771328*a(n-54) +2508504992445366272*a(n-55) +54043195528445952*a(n-56) -1152921504606846976*a(n-57) +576460752303423488*a(n-58)
Contribution from Vaclav Kotesovec, Sep 01 2012: (Start)
Empirical: G.f.: -(1 - 8*x - 53*x^2 + 336*x^3 + 134*x^4 + 2846*x^5 + 19852*x^6 - 260036*x^7 + 6880*x^8 + 1292304*x^9 - 4702832*x^10 + 63471872*x^11 - 41560704*x^12 - 709453568*x^13 + 1351929600*x^14 - 3128104192*x^15 - 659457024*x^16 + 70691011072*x^17 - 106136367104*x^18 - 132922614784*x^19 + 318303350784*x^20 - 2065904152576*x^21 + 3225670889472*x^22 + 10372375166976*x^23 - 11884683280384*x^24 + 821650128896*x^25 - 70221817905152*x^26 - 122303538593792*x^27 + 415569654579200*x^28 + 388617697755136*x^29 - 457567875104768*x^30 + 122123978801152*x^31 - 134229549645824*x^32 - 7331344765943808*x^33 - 2581369716736000*x^34 + 28061409178812416*x^35 + 3074337254932480*x^36 - 27158215842070528*x^37 + 16916901758238720*x^38 - 8637373579526144*x^39 - 42490723492167680*x^40 - 200005314030862336*x^41 + 176918825432776704*x^42 + 705725146060554240*x^43 - 362309834634166272*x^44 - 1007318127542796288*x^45 + 222508717868843008*x^46 + 1439135376433217536*x^47 - 1225049467388952576*x^48 - 273971909362712576*x^49 + 2010997971109281792*x^50 - 2011772027295236096*x^51 + 145522562959409152*x^52 + 534802455750246400*x^53 + 22517998136852480*x^54 - 288230376151711744*x^55 + 144115188075855872*x^56)/( - 1 + 9*x + 48*x^2 - 371*x^3 + 173*x^4 - 4636*x^5 - 21700*x^6 + 321034*x^7 - 261016*x^8 - 939316*x^9 + 8804712*x^10 - 89239632*x^11 + 89709648*x^12 + 830637056*x^13 - 2499914752*x^14 + 6390654336*x^15 - 987233536*x^16 - 98495866880*x^17 + 227291122176*x^18 - 22499119616*x^19 - 574642074624*x^20 + 4090433287168*x^21 - 8710999644160*x^22 - 9262792159232*x^23 + 33961426997248*x^24 - 59705619185664*x^25 + 164268932415488*x^26 + 206996041138176*x^27 - 959952477028352*x^28 + 148261211865088*x^29 + 225201818959872*x^30 - 528765464084480*x^31 + 2794884482203648*x^32 + 3264721555816448*x^33 + 9397359024799744*x^34 - 32363504358916096*x^35 - 14560459025809408*x^36 + 41205664512475136*x^37 - 65070379105779712*x^38 + 117763114509795328*x^39 - 26803976066301952*x^40 + 132124530591137792*x^41 + 236469835482005504*x^42 - 1308758689225637888*x^43 + 382298681149227008*x^44 + 1688786500906385408*x^45 - 1092767223451222016*x^46 - 1774519408253730816*x^47 + 3781671287689052160*x^48 - 211699968811991040*x^49 - 6414401302863806464*x^50 + 3737846953229156352*x^51 + 2510967898491584512*x^52 + 740560663725735936*x^53 - 4415779434636771328*x^54 + 2508504992445366272*x^55 + 54043195528445952*x^56 - 1152921504606846976*x^57 + 576460752303423488*x^58)
Asymptotic: 0.045707910845127735589456 * 9.7983760587433722777622517835675^n
(End)