cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A189145 Number of n X 2 array permutations with each element making zero or one knight moves.

Original entry on oeis.org

1, 1, 4, 16, 36, 81, 225, 625, 1600, 4096, 10816, 28561, 74529, 194481, 509796, 1336336, 3496900, 9150625, 23961025, 62742241, 164249856, 429981696, 1125736704, 2947295521, 7716041281, 20200652641, 52886200900, 138458410000
Offset: 1

Views

Author

R. H. Hardin, Apr 17 2011

Keywords

Comments

Column 2 of A189150.
a(n+2) is number of ways to place k non-attacking knights on a 2 x n board, sum over all k>=0.

Examples

			All solutions for 3X2
..0..1....0..4....5..1....5..4
..2..3....2..3....2..3....2..3
..4..5....1..5....4..0....1..0
		

Programs

  • Mathematica
    Table[FullSimplify[LucasL[2n+4]/25 + (3*Fibonacci[n+1] + Fibonacci[n]) * (2*Cos[(Pi*n)/2] + Sin[(Pi*n)/2])*2/25 + 7*(-1)^n/50 + 1/10], {n,1,20}] (* Vaclav Kotesovec, Nov 07 2011 *)

Formula

Empirical: a(n) = 3*a(n-1) -3*a(n-2) +6*a(n-3) -6*a(n-5) +3*a(n-6) -3*a(n-7) +a(n-8).
Empirical: G.f. -x*(1-2*x+4*x^2+x^3+3*x^5+x^7-6*x^4-3*x^6) / ( (x-1)*(1+x)*(x^2-3*x+1)*(x^4+3*x^2+1) ). - R. J. Mathar, Oct 15 2011
Explicit formula: ((3+sqrt(5))/2)^(n+2)/25 + ((3-sqrt(5))/2)^(n+2)/25 + (((sqrt(5)+1)/2)^(n+2) + ((sqrt(5)-1)/2)^(n+2))*4*cos((Pi*n)/2)/25 + (((sqrt(5)+1)/2)^(n+2) - ((sqrt(5)-1)/2)^(n+2))*2*sin((Pi*n)/2)/25 + 1/10 + 7/50*(-1)^n. - Vaclav Kotesovec, Nov 07 2011

A189146 Number of n X 3 array permutations with each element making zero or one knight moves.

Original entry on oeis.org

1, 4, 49, 569, 4372, 42689, 412189, 3988132, 38271921, 375573977, 3665309372, 35872284105, 350949375581, 3439343559628, 33682318930233, 330021363385529, 3233215326749252, 31680809629578289, 310402921706993341
Offset: 1

Views

Author

R. H. Hardin, Apr 17 2011

Keywords

Comments

Column 3 of A189150.

Examples

			Some solutions for 4 X 3:
..0..8..3....0..1..2....0..1..7....0..8..7....5..1..2....0..1..7....7..6..3
..2..9..6....8.11.10....3..4..6....3..9.10....8..9..0....8..4..5....2..4.10
..5..7..1....6..7..3....5..2..9...11..2..1....6..7..3...11..2..3....1..0..9
..4.10.11....9..5..4....8.10.11....4..5..6....4.10.11....9.10..6....8..5.11
		

Formula

Empirical: a(n) = 9*a(n-1) +48*a(n-2) -371*a(n-3) +173*a(n-4) -4636*a(n-5) -21700*a(n-6) +321034*a(n-7) -261016*a(n-8) -939316*a(n-9) +8804712*a(n-10) -89239632*a(n-11) +89709648*a(n-12) +830637056*a(n-13) -2499914752*a(n-14) +6390654336*a(n-15) -987233536*a(n-16) -98495866880*a(n-17) +227291122176*a(n-18) -22499119616*a(n-19) -574642074624*a(n-20) +4090433287168*a(n-21) -8710999644160*a(n-22) -9262792159232*a(n-23) +33961426997248*a(n-24) -59705619185664*a(n-25) +164268932415488*a(n-26) +206996041138176*a(n-27) -959952477028352*a(n-28) +148261211865088*a(n-29) +225201818959872*a(n-30) -528765464084480*a(n-31) +2794884482203648*a(n-32) +3264721555816448*a(n-33) +9397359024799744*a(n-34) -32363504358916096*a(n-35) -14560459025809408*a(n-36) +41205664512475136*a(n-37) -65070379105779712*a(n-38) +117763114509795328*a(n-39) -26803976066301952*a(n-40) +132124530591137792*a(n-41) +236469835482005504*a(n-42) -1308758689225637888*a(n-43) +382298681149227008*a(n-44) +1688786500906385408*a(n-45) -1092767223451222016*a(n-46) -1774519408253730816*a(n-47) +3781671287689052160*a(n-48) -211699968811991040*a(n-49) -6414401302863806464*a(n-50) +3737846953229156352*a(n-51) +2510967898491584512*a(n-52) +740560663725735936*a(n-53) -4415779434636771328*a(n-54) +2508504992445366272*a(n-55) +54043195528445952*a(n-56) -1152921504606846976*a(n-57) +576460752303423488*a(n-58)
Contribution from Vaclav Kotesovec, Sep 01 2012: (Start)
Empirical: G.f.: -(1 - 8*x - 53*x^2 + 336*x^3 + 134*x^4 + 2846*x^5 + 19852*x^6 - 260036*x^7 + 6880*x^8 + 1292304*x^9 - 4702832*x^10 + 63471872*x^11 - 41560704*x^12 - 709453568*x^13 + 1351929600*x^14 - 3128104192*x^15 - 659457024*x^16 + 70691011072*x^17 - 106136367104*x^18 - 132922614784*x^19 + 318303350784*x^20 - 2065904152576*x^21 + 3225670889472*x^22 + 10372375166976*x^23 - 11884683280384*x^24 + 821650128896*x^25 - 70221817905152*x^26 - 122303538593792*x^27 + 415569654579200*x^28 + 388617697755136*x^29 - 457567875104768*x^30 + 122123978801152*x^31 - 134229549645824*x^32 - 7331344765943808*x^33 - 2581369716736000*x^34 + 28061409178812416*x^35 + 3074337254932480*x^36 - 27158215842070528*x^37 + 16916901758238720*x^38 - 8637373579526144*x^39 - 42490723492167680*x^40 - 200005314030862336*x^41 + 176918825432776704*x^42 + 705725146060554240*x^43 - 362309834634166272*x^44 - 1007318127542796288*x^45 + 222508717868843008*x^46 + 1439135376433217536*x^47 - 1225049467388952576*x^48 - 273971909362712576*x^49 + 2010997971109281792*x^50 - 2011772027295236096*x^51 + 145522562959409152*x^52 + 534802455750246400*x^53 + 22517998136852480*x^54 - 288230376151711744*x^55 + 144115188075855872*x^56)/( - 1 + 9*x + 48*x^2 - 371*x^3 + 173*x^4 - 4636*x^5 - 21700*x^6 + 321034*x^7 - 261016*x^8 - 939316*x^9 + 8804712*x^10 - 89239632*x^11 + 89709648*x^12 + 830637056*x^13 - 2499914752*x^14 + 6390654336*x^15 - 987233536*x^16 - 98495866880*x^17 + 227291122176*x^18 - 22499119616*x^19 - 574642074624*x^20 + 4090433287168*x^21 - 8710999644160*x^22 - 9262792159232*x^23 + 33961426997248*x^24 - 59705619185664*x^25 + 164268932415488*x^26 + 206996041138176*x^27 - 959952477028352*x^28 + 148261211865088*x^29 + 225201818959872*x^30 - 528765464084480*x^31 + 2794884482203648*x^32 + 3264721555816448*x^33 + 9397359024799744*x^34 - 32363504358916096*x^35 - 14560459025809408*x^36 + 41205664512475136*x^37 - 65070379105779712*x^38 + 117763114509795328*x^39 - 26803976066301952*x^40 + 132124530591137792*x^41 + 236469835482005504*x^42 - 1308758689225637888*x^43 + 382298681149227008*x^44 + 1688786500906385408*x^45 - 1092767223451222016*x^46 - 1774519408253730816*x^47 + 3781671287689052160*x^48 - 211699968811991040*x^49 - 6414401302863806464*x^50 + 3737846953229156352*x^51 + 2510967898491584512*x^52 + 740560663725735936*x^53 - 4415779434636771328*x^54 + 2508504992445366272*x^55 + 54043195528445952*x^56 - 1152921504606846976*x^57 + 576460752303423488*x^58)
Asymptotic: 0.045707910845127735589456 * 9.7983760587433722777622517835675^n
(End)

A189147 Number of n X 4 array permutations with each element making zero or one knight moves.

Original entry on oeis.org

1, 16, 569, 22865, 602565, 20037184, 697391125, 23675552985, 795238713880, 26951220352400, 913977071210296, 30940515859900745, 1047262588533673413, 35458251391751991872, 1200493587874267680981, 40641478966775581618385
Offset: 1

Views

Author

R. H. Hardin, Apr 17 2011

Keywords

Examples

			Some solutions for 3X4
..9..8.11.10....0..1.11..5....6..8..2.10....9..8..4..3....9..7..4..3
..2..3..0..1...10..3..6..7....4.11..0..7....2.11..6..7....2.11..8..1
..6..7..4..5....8..9..4..2....1..9..3..5....1..0.10..5....6..0.10..5
		

Crossrefs

Column 4 of A189150.

A189148 Number of nX5 array permutations with each element making zero or one knight moves.

Original entry on oeis.org

1, 36, 4372, 602565, 46350185, 5025299720, 585494657168, 64669361584729
Offset: 1

Views

Author

R. H. Hardin Apr 17 2011

Keywords

Comments

Column 5 of A189150

Examples

			Some solutions for 3X5
..7..8..5.12.13....0.12..5.14.13....7.10..2.14..4....0..8.11..6..7
..2..6.14.11..9....2..6.10.11..9...12.13..0.11..9....5.13.14..1.12
.10..0..1..4..3....1..8..3..4..7....1..8..5..6..3...10..2..9..4..3
		

A189149 Number of nX6 array permutations with each element making zero or one knight moves.

Original entry on oeis.org

1, 81, 42689, 20037184, 5025299720
Offset: 1

Views

Author

R. H. Hardin Apr 17 2011

Keywords

Comments

Column 6 of A189150

Examples

			Some solutions for 3X6
..0.12.10..3..4.16...13.12..6.16.17..9....8..9..6..3..4.16....0..1.15.11.17..5
..2..7..8.17.14.15...14..7..0..1.10.15...14..7.12.13..2.15...14..7..8.13.10..3
..1.13..6.11..5..9....8..2..3.11..5..4....1..0.10.11..5.17...12..9..6..2.16..4
		
Showing 1-5 of 5 results.