This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A189151 #21 Jul 28 2022 15:19:55 %S A189151 5,10,11,17,18,19,26,27,28,29,37,38,39,40,41,50,51,52,53,54,55,65,66, %T A189151 67,68,69,70,71,82,83,84,85,86,87,88,89,101,102,103,104,105,106,107, %U A189151 108,109,122,123,124,125,126,127,128,129,130,131,145,146,147,148 %N A189151 Numbers n such that n < floor(sqrt(n)) * ceiling(sqrt(n)). %C A189151 n belongs to this sequence iff %C A189151 n in (k^2,k*(k+1)), k >= 0. %C A189151 See also: %C A189151 n belongs to A002620 iff %C A189151 n = floor(sqrt(n))*ceiling(sqrt(n)), i.e. %C A189151 n = k^2 or n = k*(k+1), k >= 0. %C A189151 n belongs to A063657 iff %C A189151 n > floor(sqrt(n))*ceiling(sqrt(n)), i.e. %C A189151 n in (k*(k+1),k^2), k >= 0. %H A189151 Robert Israel, <a href="/A189151/b189151.txt">Table of n, a(n) for n = 1..10153</a> %F A189151 G.f.: (1-x)^(-2)-(1-x)^(-1)*(1+x+x^2-Sum_{k>=0} k*x^((k^2-5*k+8)/2)). - _Robert Israel_, Jan 02 2017 %p A189151 seq($k^2+1..k^2+k-1,k=0..20); # _Robert Israel_, Jan 02 2017 %t A189151 Select[Range[200], # < Floor[Sqrt[#]] Ceiling[Sqrt[#]] &] (* _T. D. Noe_, Apr 20 2011 *) %o A189151 (Python) %o A189151 from itertools import count, islice %o A189151 def A189151_gen(): # generator of terms %o A189151 return (n for k in count(0) for n in range(k**2+1,k*(k+1))) %o A189151 A189151_list = list(islice(A189151_gen(),25)) # _Chai Wah Wu_, Jul 28 2022 %Y A189151 Cf. A002620, A063657. %K A189151 nonn %O A189151 1,1 %A A189151 _Daniel Forgues_, Apr 17 2011