This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A189162 #25 May 09 2023 07:14:00 %S A189162 1,3,9,24,61,148,350,808,1837,4116,9130,20056,43746,94760,204188, %T A189162 437712,934525,1987252,4212338,8900344,18756886,39426168,82693924, %U A189162 173071024,361567186,753984648,1569877860,3263572848,6775522852,14047800016,29091783096,60175932320 %N A189162 The maximum possible value for the apex of a triangle of numbers whose base consists of a permutation of the numbers 1 to n, and each number in a higher row is the sum of the two numbers directly below it. %C A189162 The maximum is attained by the triangle with base 1, 3, 5, ..., 2*ceiling(n/2)-1, 2*floor(n/2), ..., 6, 4, 2 (i.e., odd numbers increasing, followed by even numbers decreasing). %H A189162 Nathaniel Johnston, <a href="/A189162/b189162.txt">Table of n, a(n) for n = 1..1000</a> %F A189162 a(n) = 2^(n-1) + A189390(n-1). %F A189162 D-finite with recurrence (-n+1)*a(n) +4*(n-1)*a(n-1) -12*a(n-2) +16*(-n+4)*a(n-3) +16*(n-4)*a(n-4)=0. - _R. J. Mathar_, Jun 17 2021 %e A189162 For n = 5 consider the triangle: %e A189162 61 %e A189162 29 32 %e A189162 12 17 15 %e A189162 4 8 9 6 %e A189162 1 3 5 4 2 %e A189162 This triangle has 61 at its apex and no other such triangle with the numbers 1 - 5 on its base has a larger apex value, so a(5) = 61. %p A189162 a:=proc(n)return 2^(n-1) + add((4*k+1)*binomial(n-1,k),k=0..floor(n/2)-1) + `if`(n mod 2=1,(n-1)*binomial(n-1,(n-1)/2),0):end: %p A189162 seq(a(n),n=1..50); %t A189162 a[n_] := a[n] = Switch[n, 1, 1, 2, 3, 3, 9, 4, 24, _, (1/(n-1))*(4((4n-16)a[n-4] - (4n-16)a[n-3] - 3a[n-2] + (n-1)a[n-1]))]; %t A189162 Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, May 09 2023, after _R. J. Mathar_ *) %Y A189162 Cf. A066411, A099325, A189390, A189391. %K A189162 easy,nonn %O A189162 1,2 %A A189162 _Nathaniel Johnston_, Apr 20 2011