This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A189176 #24 Apr 04 2024 15:00:09 %S A189176 1,2,5,15,49,168,594,2145,7865,29172,109174,411502,1560090,5943200, %T A189176 22732740,87253605,335897865,1296447900,5015206350,19439895090, %U A189176 75487384830,293595204240,1143532045500,4459774977450,17413705988874,68067249620328,266326619546204 %N A189176 Row sums of the Riordan matrix (1+x/sqrt(1-4*x),(1-sqrt(1-4*x))/2) (A189175). %F A189176 a(n) = Sum_{k=0..n} binomial(2*n-k,n-k)*(n^2+n*k-k^2-k)/((2*n-k)*(2*n-k-1)), for n>=2. %F A189176 G.f.: (1-5*x+4*x^2-(1-5*x)*sqrt(1-4x))/(2*x*(1-4*x)) %F A189176 a(n) = Sum_{k=1..n} (3-k)*binomial(2*n-k-1,n-1), n>0, a(0)=1. - _Vladimir Kruchinin_, Oct 18 2011 %F A189176 From _Gary W. Adamson_, Nov 14 2011: (Start) %F A189176 a(n) is the sum of top row terms in M^n, M = an infinite square production matrix as follows, with the Fibonacci sequence as the left border: %F A189176 1, 1, 0, 0, 0, 0, ... %F A189176 1, 1, 1, 0, 0, 0, ... %F A189176 2, 1, 1, 1, 0, 0, ... %F A189176 3, 1, 1, 1, 1, 0, ... %F A189176 5, 1, 1, 1, 1, 1, ... %F A189176 which means the top row of M^n is the n-th row in A189175. (End) %F A189176 Conjecture: (n+1)*a(n) + 3*(1-3*n)*a(n-1) + 10*(2*n-3)*a(n-2) = 0. - _R. J. Mathar_, Nov 15 2011 %F A189176 a(n) = Sum_{k=0..n} (k+1) * A090181(n,k). - _Alois P. Heinz_, Apr 04 2024 %e A189176 a(3) = 15 since the top row of M^3 = (6, 5, 3, 1, 0, 0, 0, ...) %t A189176 T[n_,k_] := If[n==k,1,Binomial[2n-k,n-k](n^2+n k-k^2-k)/((2n-k)(2n-k-1))]; Table[Sum[T[n,k], {k,0,n}], {n,0,22}] %o A189176 (Maxima) T(n,k):=if n=k then 1 else binomial(2*n-k,n-k)*(n^2+n*k-k^2-k)/((2*n-k)*(2*n-k-1)); %o A189176 makelist(sum(T(n,k),k,0,n),n,0,22); %Y A189176 Cf. A090181, A189175. %K A189176 nonn,easy %O A189176 0,2 %A A189176 _Emanuele Munarini_, Apr 18 2011