cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189197 Number of 4 X n binary arrays without the pattern 0 0 1 vertically or antidiagonally.

Original entry on oeis.org

12, 144, 1494, 15326, 156564, 1598444, 16316636, 166552852, 1700084336, 17353550112, 177135689224, 1808105575848, 18456166259888, 188390587782160, 1922989479244368, 19628839107258224, 200360599393734848
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2011

Keywords

Comments

Row 4 of A189196.

Examples

			Some solutions for 4 X 3:
..1..1..1....1..0..0....1..1..1....1..0..1....0..0..0....1..0..1....0..0..1
..1..1..1....1..1..1....0..1..0....0..1..0....1..1..1....1..1..1....0..1..0
..0..0..0....1..1..0....1..1..0....1..0..0....1..1..0....1..0..1....0..0..1
..1..1..0....0..1..1....1..0..0....0..1..0....0..1..1....0..0..1....0..1..1
		

Crossrefs

Cf. A189196.

Formula

Empirical: a(n) = 12*a(n-1) -14*a(n-2) -52*a(n-3) +82*a(n-4) +16*a(n-5) -56*a(n-6) +16*a(n-7).
Empirical g.f.: 2*x*(1 - x)*(2 + 2*x - x^2)*(3 - 12*x^2 + 8*x^3) / (1 - 12*x + 14*x^2 + 52*x^3 - 82*x^4 - 16*x^5 + 56*x^6 - 16*x^7). - Colin Barker, May 01 2018