A189199 Number of 6Xn binary arrays without the pattern 0 0 1 vertically or antidiagonally.
33, 1089, 27170, 657028, 15564047, 367115337, 8646366042, 203562575017, 4791913469442, 112799071668131, 2655202148877722, 62501206566986486, 1471224094156225703, 34631328118629702199, 815191106000869861143
Offset: 1
Keywords
Examples
Some solutions for 6X3 ..1..1..1....1..1..1....0..0..1....1..1..1....1..0..0....1..1..1....1..0..1 ..0..1..0....0..1..0....1..1..1....0..0..0....0..1..1....0..0..1....0..1..0 ..1..1..1....1..1..0....1..1..0....0..1..1....1..0..1....1..1..0....1..1..0 ..1..1..0....1..0..0....1..1..0....0..1..1....1..1..0....0..0..1....1..1..0 ..1..0..1....0..1..0....0..1..0....0..1..1....0..1..1....0..1..1....0..1..0 ..0..0..0....1..1..0....1..1..0....0..0..0....0..1..1....0..0..0....1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Formula
Empirical: a(n) = 33*a(n-1) -206*a(n-2) -738*a(n-3) +8753*a(n-4) -13693*a(n-5) -33068*a(n-6) +87427*a(n-7) -52757*a(n-8) +67082*a(n-9) -70312*a(n-10) -61118*a(n-11) +47608*a(n-12) -908*a(n-13) -1404*a(n-14) +568*a(n-15) -192*a(n-16)
Comments