A189229 Counterexamples to Polya's conjecture that A002819(n) <= 0 if n > 1.
906150257, 906150258, 906150259, 906150260, 906150261, 906150262, 906150263, 906150264, 906150265, 906150266, 906150267, 906150268, 906150269, 906150270, 906150271, 906150272, 906150273, 906150274, 906150275, 906150276, 906150277, 906150278, 906150279, 906150280
Offset: 1
Keywords
Examples
906150257 is the smallest number k > 1 with A002819(k) > 0 (see Tanaka 1980).
References
- Barry Mazur and William Stein, Prime Numbers and the Riemann Hypothesis, Cambridge University Press, 2016. See p. 22.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000
- R. P. Brent and J. van de Lune, A note on Polya's observation concerning Liouville's function, arXiv:1112.4911 [math.NT] 2011.
- Jarosław Grytczuk, From the 1-2-3 Conjecture to the Riemann Hypothesis, arXiv:2003.02887 [math.CO], 2020. See p. 9.
- Ben Sparks, 906,150,257 and the Pólya conjecture (MegaFavNumbers), SparksMath video (2020).
- M. Tanaka, A Numerical Investigation on Cumulative Sum of the Liouville Function, Tokyo J. Math. 3 (1980), 187-189.
- Wikipedia, Pólya conjecture.
Crossrefs
Programs
-
PARI
s=1; c=0; for(n=2, 906188859, s=s+(-1)^bigomega(n); if(s>0, c++; write("b189229.txt", c " " n))) /* Donovan Johnson, Apr 25 2013 */
Formula
{ k : (k-1)*A002819(k) > 0. }
Comments