A189230 Complementary Catalan triangle read by rows.
0, 1, 0, 0, 2, 0, 3, 0, 3, 0, 0, 8, 0, 4, 0, 10, 0, 15, 0, 5, 0, 0, 30, 0, 24, 0, 6, 0, 35, 0, 63, 0, 35, 0, 7, 0, 0, 112, 0, 112, 0, 48, 0, 8, 0, 126, 0, 252, 0, 180, 0, 63, 0, 9, 0, 0, 420, 0, 480, 0, 270, 0, 80, 0, 10, 0, 462, 0, 990, 0, 825, 0, 385, 0, 99, 0, 11, 0
Offset: 0
Examples
[0] 0, [1] 1, 0, [2] 0, 2, 0, [3] 3, 0, 3, 0, [4] 0, 8, 0, 4, 0, [5] 10, 0, 15, 0, 5, 0, [6] 0, 30, 0, 24, 0, 6, 0, [7] 35, 0, 63, 0, 35, 0, 7, 0, [0],[1],[2],[3],[4],[5],[6],[7]
Links
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- Peter Luschny, The lost Catalan numbers
Programs
-
Maple
A189230 := (n,k) -> A189231(n,k)*modp(n-k,2): seq(print(seq(A189230(n,k),k=0..n)),n=0..11);
-
Mathematica
t[n_, k_] /; (k>n || k<0) = 0; t[n_, n_] = 1; t[n_, k_] := t[n, k] = t[n-1, k-1] + Mod[n-k, 2] t[n-1, k] + t[n-1, k+1]; T[n_, k_] := t[n, k] Mod[n-k, 2]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] (* Jean-François Alcover, Jun 24 2019 *)
Comments