A189232 Triangle read by rows: Number of crossing set partitions of {1,2,...,n} into k blocks.
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 5, 5, 0, 0, 0, 16, 40, 15, 0, 0, 0, 42, 196, 175, 35, 0, 0, 0, 99, 770, 1211, 560, 70, 0, 0, 0, 219, 2689, 6594, 5187, 1470, 126, 0, 0, 0, 466, 8790, 31585, 37233, 17535, 3360, 210, 0, 0
Offset: 1
Examples
There are 10 crossing set partitions of {1,2,3,4,5}. T(5,2) = card{13|245, 14|235, 24|135, 25|134, 35|124} = 5. T(5,3) = card{1|35|24, 2|14|35, 3|14|25, 4|13|25, 5|13|24} = 5. [1] 0 [2] 0, 0 [3] 0, 0, 0 [4] 0, 1, 0, 0 [5] 0, 5, 5, 0, 0 [6] 0, 16, 40, 15, 0, 0 [7] 0, 42, 196, 175, 35, 0, 0 [8] 0, 99, 770, 1211, 560, 70, 0, 0
References
- R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999 (Exericses 6.19)
Programs
-
Maple
A189232 := (n,k) -> combinat[stirling2](n,k) - binomial(n,k-1)*binomial(n,k)/n: for n from 1 to 9 do seq(A189232(n,k), k = 1..n) od;
-
Mathematica
T[n_, k_] := StirlingS2[n, k] - Binomial[n, k-1] Binomial[n, k]/n; Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* Jean-François Alcover, Jun 24 2019 *)
Formula
T(n,k) = S2(n,k) - C(n,k-1)*C(n,k)/n; S2(n,k) Stirling numbers of the second kind, C(n,k) binomial coefficients.