This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A189243 #40 May 01 2013 21:06:47 %S A189243 1,2,6,21,88,390,1914 %N A189243 Number of ways to dissect a nonsquare rectangle into n rectangles with equal area. %C A189243 Dissections which differ by rotations or reflections are counted as distinct. %C A189243 Rectangles may have different shapes. %C A189243 a(1) to a(5) are the same (but not a(6)) as: %C A189243 A033540 a(n+1) = n*(a(n)+1), n >= 1, a(1) = 1. %C A189243 If the dissections with a cross (where four squares share a vertex) were counted twice then a(1) to a(5) would be the same as the 'guillotine partitions' counted by A006318. - _Geoffrey H. Morley_, Dec 31 2012 %H A189243 Geoffrey H. Morley, <a href="/A189243/a189243_1.pdf">Illustration of terms up to a(5)</a> %H A189243 N. J. A. Sloane, <a href="/A189243/a189243.jpg">Illustration of the term a(4) = 21</a> %H A189243 "056254628", <a href="http://bbs.emath.ac.cn/thread-2916-1-4.html">A Chinese web page containing the problem and illustrating the initial terms</a> %F A189243 For n > 4, a(n) = b(n)+ %F A189243 +-------+ +-------+ +-------+ +---+---+ +---+---+ %F A189243 | | | | | | | | | | | | %F A189243 +-------+ +-------+ +-------+ +---+---+ +---+---+ %F A189243 |[a(n-1)| | | | | |[a(n-2)| | | %F A189243 |-a(n-2)|*4+| a(n-2)|*2+| a(n-3)|*4+|-a(n-3)|*4+| a(n-4)|*2 %F A189243 |-a(n-3)| +-------+ +---+---+ |-a(n-4)| +---+---+ %F A189243 |] | | | | | | |] | | | | %F A189243 +-------+ +-------+ +---+---+ +-------+ +---+---+ %F A189243 = b(n)+4*a(n-1)+2*a(n-2)-4*a(n-3)-2*a(n-4) where b(n) is the number of tilings in which no side of the rectangle comprises the side of a tile or the equal sides of two congruent tiles. For example, b(5) = 2. '*2' counts, say, rotation clockwise by 90 degrees (and rescaling the aspect ratio), while '*4' counts all rotations. - _Geoffrey H. Morley_, Dec 07 2012 %e A189243 There are 6 ways to form a rectangle from 3 rectangles with same area: %e A189243 +-----+ +-+-+-+ +-----+ +--+--+ +-+---+ +---+-+ %e A189243 | | | | | | | | | | | | | | | | | %e A189243 +-----+ | | | | +--+--+ | | | | | | | | | %e A189243 | | | | | | | | | | | | | +---+ +---+ | %e A189243 +-----+ | | | | | | | +--+--+ | | | | | | %e A189243 | | | | | | | | | | | | | | | | | %e A189243 +-----+ +-+-+-+ +--+--+ +-----+ +-+---+ +---+-+ %e A189243 So a(3)=6. %e A189243 From _Geoffrey H. Morley_, Dec 03 2012: (Start) %e A189243 b(n) in the given formula is the sum of the appropriate tilings from certain 'frames'. A number that appears in a subrectangle in a frame is the number of rectangles into which the subrectangle is to be divided. Tilings are also counted that are from a reflection and/or half-turn of the frame. %e A189243 For n = 6 there are 3(X2) frames: %e A189243 +---+-+-+ +-+-----+ +-+-----+ %e A189243 | | | | | | | | | | %e A189243 | | | | | +---+-+ | | 2 | %e A189243 +-+-+ | | | | | | | | | %e A189243 | | | | | | +---+ | | +---+-+ %e A189243 | | +-+-+ | | | | | | | | %e A189243 | | | | +-+---+ | +-+---+ | %e A189243 | | | | | | | | | | %e A189243 +-+-+---+ +-----+-+ +-----+-+ %e A189243 2 ways 2 ways 8 ways %e A189243 The only other frames which yield desired tilings are obtained by rotating each frame above by 90 degrees and scaling it to fit a rectangle with the inverse aspect ratio. %e A189243 So b(6) = 2(2+2+8) = 24, and a(6) = b(6)+4*a(5)+2*a(4)-4*a(3)-2*a(2) = 24+4*88+2*21-4*6-2*2 = 390. %e A189243 For n = 7 we can use 7(X2) frames: %e A189243 +---+--+ %e A189243 | | | %e A189243 | | | %e A189243 | 4 |3 | %e A189243 | | | %e A189243 | | | %e A189243 | | | %e A189243 +---+--+ %e A189243 63 ways [of creating tilings counted by b(7)] %e A189243 +---+--+ +-+----+ +--+---+ +-----++ +--+---+ +----+-+ %e A189243 | | | | | | | | | ++----+| | | | ++-+-+ | %e A189243 | +-++ | +---++ |2 | 2 | || || | +-+-+ || | | | %e A189243 | 3 | || |2| || | +--++ || || |2 | | | || | | | %e A189243 | | || | | 2 || | | || || 3 || | | | | || +-+-+ %e A189243 | | || | | || +--+--+| || || +--+-+2| || | | %e A189243 +---+-+| +-+---+| | || |+----++ | | | |+-+---+ %e A189243 +-----++ +-----++ +-----++ ++-----+ +----+-+ ++-----+ %e A189243 24 ways 16 ways 12 ways 10 ways 8 ways 4 ways %e A189243 As for n = 6, these are only half the frames and tilings. %e A189243 So b(7) = 2(63+24+16+12+10+8+4) = 274, and a(7) = b(7)+4*a(6)+2*a(5)-4*a(4)-2*a(3) = 274+4*390+2*88-4*21-2*6 = 1914. %e A189243 (End) %Y A189243 See the analogous sequences A219861 and A108066 where we count dissections up to symmetry of nonsquare rectangles and squares respectively. - _Geoffrey H. Morley_, Dec 03 2012 %K A189243 nonn,nice,more %O A189243 1,2 %A A189243 _Yi Yang_, Apr 19 2011 %E A189243 Edited by _N. J. A. Sloane_, Apr 21 2011 %E A189243 a(7) added by _Geoffrey H. Morley_, Dec 03 2012 %E A189243 a(7) corrected by _Geoffrey H. Morley_, Dec 05 2012