A189259 Number of nX4 binary arrays without the pattern 0 0 1 diagonally, antidiagonally or horizontally.
12, 144, 1156, 8900, 65760, 481552, 3510380, 25556548, 185975588, 1353139492, 9844797788, 71624858188, 521097138012, 3791166287372, 27582062117196, 200669125155708, 1459937829727116, 10621556383444668, 77275523001250188
Offset: 1
Keywords
Examples
Some solutions for 4X3 ..0..1..0....1..1..1....0..1..0....1..1..1....0..0..0....1..1..0....1..0..0 ..1..1..1....0..1..0....1..1..1....0..1..0....1..1..0....1..1..1....0..1..1 ..1..1..1....1..1..1....1..1..0....1..1..1....0..0..0....1..1..0....0..1..0 ..0..1..1....0..1..1....1..1..0....0..0..1....1..1..0....0..1..1....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Formula
Empirical: a(n) = 9*a(n-1) -9*a(n-2) -27*a(n-3) +62*a(n-4) -522*a(n-5) +730*a(n-6) +2202*a(n-7) -3620*a(n-8) +5768*a(n-9) -7920*a(n-10) -45696*a(n-11) +71680*a(n-12) +75424*a(n-13) -146112*a(n-14) +13984*a(n-15) +51072*a(n-16) -17024*a(n-17) for n>18
Comments