A189265 Number of 3Xn binary arrays without the pattern 0 0 1 diagonally, antidiagonally or horizontally.
8, 64, 280, 1156, 4720, 18960, 74869, 293495, 1143065, 4435997, 17166670, 66321486, 255904884, 986647975, 3801894402, 14644645685, 56395631397, 217139104510, 835947689845, 3217998048544, 12387073741629, 47679941911196
Offset: 1
Keywords
Examples
Some solutions for 3X3 ..1..1..0....1..1..0....0..1..1....1..1..1....1..0..1....1..0..0....1..1..0 ..0..1..1....1..1..0....0..1..0....0..0..0....1..1..0....1..1..0....1..1..0 ..1..1..0....1..1..1....0..0..0....0..1..1....0..0..0....1..0..0....1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Formula
Empirical: a(n) = 6*a(n-1) +4*a(n-2) -71*a(n-3) +33*a(n-4) +318*a(n-5) -222*a(n-6) -671*a(n-7) +384*a(n-8) +626*a(n-9) +97*a(n-10) -36*a(n-11) -926*a(n-12) -422*a(n-13) +858*a(n-14) +428*a(n-15) -119*a(n-16) -274*a(n-17) -183*a(n-18) +127*a(n-19) +86*a(n-20) -35*a(n-21) -11*a(n-22) +4*a(n-23) for n>26
Comments