cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189265 Number of 3Xn binary arrays without the pattern 0 0 1 diagonally, antidiagonally or horizontally.

Original entry on oeis.org

8, 64, 280, 1156, 4720, 18960, 74869, 293495, 1143065, 4435997, 17166670, 66321486, 255904884, 986647975, 3801894402, 14644645685, 56395631397, 217139104510, 835947689845, 3217998048544, 12387073741629, 47679941911196
Offset: 1

Views

Author

R. H. Hardin Apr 19 2011

Keywords

Comments

Row 3 of A189264

Examples

			Some solutions for 3X3
..1..1..0....1..1..0....0..1..1....1..1..1....1..0..1....1..0..0....1..1..0
..0..1..1....1..1..0....0..1..0....0..0..0....1..1..0....1..1..0....1..1..0
..1..1..0....1..1..1....0..0..0....0..1..1....0..0..0....1..0..0....1..0..1
		

Formula

Empirical: a(n) = 6*a(n-1) +4*a(n-2) -71*a(n-3) +33*a(n-4) +318*a(n-5) -222*a(n-6) -671*a(n-7) +384*a(n-8) +626*a(n-9) +97*a(n-10) -36*a(n-11) -926*a(n-12) -422*a(n-13) +858*a(n-14) +428*a(n-15) -119*a(n-16) -274*a(n-17) -183*a(n-18) +127*a(n-19) +86*a(n-20) -35*a(n-21) -11*a(n-22) +4*a(n-23) for n>26