cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189326 T(n,k)=Number of nondecreasing arrangements of n+2 numbers in 0..k with the last equal to k and each after the second equal to the sum of one or two of the preceding four.

This page as a plain text file.
%I A189326 #7 Jul 22 2025 11:41:38
%S A189326 2,4,2,5,6,2,7,7,8,2,8,12,11,10,2,10,12,20,16,12,2,11,18,21,32,22,14,
%T A189326 2,13,17,36,33,49,28,16,2,14,24,31,64,54,70,34,18,2,16,22,49,51,110,
%U A189326 84,94,40,20,2,17,30,42,95,91,179,119,120,46,22,2,19,27,63,76,179,157,275,157
%N A189326 T(n,k)=Number of nondecreasing arrangements of n+2 numbers in 0..k with the last equal to k and each after the second equal to the sum of one or two of the preceding four.
%C A189326 Table starts
%C A189326 .2..4..5...7...8..10..11...13...14...16...17...19...20...22...23....25...26
%C A189326 .2..6..7..12..12..18..17...24...22...30...27...36...32...42...37....48...42
%C A189326 .2..8.11..20..21..36..31...49...42...63...51...79...60...93...72...105...80
%C A189326 .2.10.16..32..33..64..51...95...76..122...91..166..102..185..141...214..137
%C A189326 .2.12.22..49..54.110..91..179..154..238..190..360..215..376..333...453..290
%C A189326 .2.14.28..70..84.179.157..321..283..461..390..720..482..784..747...988..684
%C A189326 .2.16.34..94.119.275.253..548..477..845..725.1375..951.1608.1522..2126.1511
%C A189326 .2.18.40.120.157.393.374..866..775.1426.1261.2448.1761.3006.2890..4232.3063
%C A189326 .2.20.46.148.195.528.509.1267.1161.2230.2033.4069.3000.5252.5080..7749.5692
%C A189326 .2.22.52.178.233.676.649.1733.1606.3234.3005.6291.4691.8502.8350.13138.9724
%H A189326 R. H. Hardin, <a href="/A189326/b189326.txt">Table of n, a(n) for n = 1..3692</a>
%F A189326 Empirical: T(n,1) = 2
%F A189326 Empirical: T(n,2) = 2*n + 2
%F A189326 Empirical: T(n,3) = 6*n - 8 for n>3
%F A189326 Empirical: T(n,4) = n^2 + 11*n - 32 for n>5
%F A189326 Empirical: T(n,5) = 38*n - 147 for n>6
%F A189326 Empirical: T(n,6) = 6*n^2 + 34*n - 264 for n>8
%F A189326 Empirical: T(n,7) = 140*n - 751 for n>8
%F A189326 Empirical: T(n,8) = (1/3)*n^3 + 10*n^2 + (587/3)*n - 1558 for n>10
%e A189326 Some solutions for n=5 k=3
%e A189326 ..1....0....1....0....1....1....0....1....0....0....3....0....1....1....1....1
%e A189326 ..2....1....1....1....2....1....1....3....1....1....3....1....1....1....1....2
%e A189326 ..2....1....1....1....2....1....1....3....1....1....3....1....2....2....1....3
%e A189326 ..3....1....1....1....2....1....2....3....2....2....3....1....2....2....2....3
%e A189326 ..3....2....1....1....3....2....2....3....2....3....3....2....3....2....3....3
%e A189326 ..3....2....2....2....3....3....2....3....3....3....3....3....3....3....3....3
%e A189326 ..3....3....3....3....3....3....3....3....3....3....3....3....3....3....3....3
%Y A189326 Row 1 is A001651(n+1)
%K A189326 nonn,tabl
%O A189326 1,1
%A A189326 _R. H. Hardin_ Apr 20 2011