cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A189327 Number of nondecreasing arrangements of 4 numbers in 0..n with the last equal to n and each after the second equal to the sum of one or two of the preceding four.

Original entry on oeis.org

2, 6, 7, 12, 12, 18, 17, 24, 22, 30, 27, 36, 32, 42, 37, 48, 42, 54, 47, 60, 52, 66, 57, 72, 62, 78, 67, 84, 72, 90, 77, 96, 82, 102, 87, 108, 92, 114, 97, 120, 102, 126, 107, 132, 112, 138, 117, 144, 122, 150, 127, 156, 132, 162, 137, 168, 142, 174, 147, 180, 152, 186, 157
Offset: 1

Views

Author

R. H. Hardin Apr 20 2011

Keywords

Comments

Row 2 of A189326

Examples

			All solutions for n=3
..0....3....1....1....1....2....1
..3....3....2....1....3....3....2
..3....3....3....2....3....3....2
..3....3....3....3....3....3....3
		

Formula

Empirical: a(n) = 2*a(n-2) -a(n-4)

A189319 Number of nondecreasing arrangements of n+2 numbers in 0..n with the last equal to n and each after the second equal to the sum of one or two of the preceding four.

Original entry on oeis.org

2, 6, 11, 32, 54, 179, 253, 866, 1161, 3234, 4100, 12289, 11179, 28957, 35448, 81956, 60820, 184122, 127607, 389213, 298758, 584334, 434068, 1773649, 705685, 1778949, 1505153, 3979185, 1735705, 7116031, 2564548, 11409548, 5647305, 10489351
Offset: 1

Views

Author

R. H. Hardin Apr 20 2011

Keywords

Comments

Diagonal of A189326

Examples

			All solutions for n=3
..0....1....3....0....1....2....1....1....1....1....1
..3....2....3....1....3....3....1....1....2....2....1
..3....3....3....1....3....3....1....2....2....2....2
..3....3....3....2....3....3....2....3....2....3....2
..3....3....3....3....3....3....3....3....3....3....3
		

A189320 Number of nondecreasing arrangements of n+2 numbers in 0..3 with the last equal to 3 and each after the second equal to the sum of one or two of the preceding four.

Original entry on oeis.org

5, 7, 11, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76, 82, 88, 94, 100, 106, 112, 118, 124, 130, 136, 142, 148, 154, 160, 166, 172, 178, 184, 190, 196, 202, 208, 214, 220, 226, 232, 238, 244, 250, 256, 262, 268, 274, 280, 286, 292, 298, 304, 310, 316, 322, 328, 334, 340
Offset: 1

Views

Author

R. H. Hardin Apr 20 2011

Keywords

Comments

Column 3 of A189326

Examples

			All solutions for n=4
..2....1....1....1....0....0....3....1....0....1....1....1....0....1....1....1
..3....2....2....1....1....1....3....3....1....1....1....2....3....1....1....1
..3....2....2....2....1....1....3....3....1....1....1....3....3....1....2....2
..3....3....2....2....2....2....3....3....1....2....2....3....3....1....2....3
..3....3....3....3....2....3....3....3....2....2....3....3....3....2....2....3
..3....3....3....3....3....3....3....3....3....3....3....3....3....3....3....3
		

Formula

Empirical: a(n) = 6*n - 8 for n>3

A189321 Number of nondecreasing arrangements of n+2 numbers in 0..4 with the last equal to 4 and each after the second equal to the sum of one or two of the preceding four.

Original entry on oeis.org

7, 12, 20, 32, 49, 70, 94, 120, 148, 178, 210, 244, 280, 318, 358, 400, 444, 490, 538, 588, 640, 694, 750, 808, 868, 930, 994, 1060, 1128, 1198, 1270, 1344, 1420, 1498, 1578, 1660, 1744, 1830, 1918, 2008, 2100, 2194, 2290, 2388, 2488, 2590, 2694, 2800, 2908
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2011

Keywords

Comments

Column 4 of A189326.

Examples

			Some solutions for n=3:
..1....1....3....0....1....2....1....1....1....4....1....0....1....1....2....1
..3....2....4....4....3....2....3....1....2....4....2....2....2....1....2....4
..4....2....4....4....3....4....3....2....3....4....3....2....2....2....2....4
..4....2....4....4....4....4....3....2....3....4....4....2....3....3....2....4
..4....4....4....4....4....4....4....4....4....4....4....4....4....4....4....4
		

Crossrefs

Cf. A189326.

Formula

Empirical: a(n) = n^2 + 11*n - 32 for n>5.
Empirical g.f.: x*(7 - 9*x + 5*x^2 + x^3 + x^4 - x^5 - x^6 - x^7) / (1 - x)^3. - Colin Barker, May 02 2018

A189322 Number of nondecreasing arrangements of n+2 numbers in 0..5 with the last equal to 5 and each after the second equal to the sum of one or two of the preceding four.

Original entry on oeis.org

8, 12, 21, 33, 54, 84, 119, 157, 195, 233, 271, 309, 347, 385, 423, 461, 499, 537, 575, 613, 651, 689, 727, 765, 803, 841, 879, 917, 955, 993, 1031, 1069, 1107, 1145, 1183, 1221, 1259, 1297, 1335, 1373, 1411, 1449, 1487, 1525, 1563, 1601, 1639, 1677, 1715
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2011

Keywords

Comments

Column 5 of A189326.

Examples

			Some solutions for n=3:
..1....1....2....5....1....1....1....1....1....4....1....2....3....2....1....0
..2....2....3....5....3....2....2....1....3....5....3....5....5....3....4....5
..2....3....3....5....3....2....3....2....4....5....4....5....5....3....4....5
..4....3....5....5....4....3....4....3....5....5....4....5....5....3....4....5
..5....5....5....5....5....5....5....5....5....5....5....5....5....5....5....5
		

Crossrefs

Cf. A189326.

Formula

Empirical: a(n) = 38*n - 147 for n>6.
Empirical g.f.: x*(8 - 4*x + 5*x^2 + 3*x^3 + 9*x^4 + 9*x^5 + 5*x^6 + 3*x^7) / (1 - x)^2. - Colin Barker, May 02 2018

A189323 Number of nondecreasing arrangements of n+2 numbers in 0..6 with the last equal to 6 and each after the second equal to the sum of one or two of the preceding four.

Original entry on oeis.org

10, 18, 36, 64, 110, 179, 275, 393, 528, 676, 836, 1008, 1192, 1388, 1596, 1816, 2048, 2292, 2548, 2816, 3096, 3388, 3692, 4008, 4336, 4676, 5028, 5392, 5768, 6156, 6556, 6968, 7392, 7828, 8276, 8736, 9208, 9692, 10188, 10696, 11216, 11748, 12292, 12848
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2011

Keywords

Comments

Column 6 of A189326.

Examples

			Some solutions for n=3:
..1....1....2....2....1....3....1....2....2....0....1....1....3....2....1....1
..5....6....3....4....4....6....5....2....4....3....3....3....3....3....5....3
..5....6....3....4....5....6....5....4....4....3....4....3....3....3....6....3
..5....6....6....4....5....6....6....6....6....3....5....4....6....3....6....6
..6....6....6....6....6....6....6....6....6....6....6....6....6....6....6....6
		

Crossrefs

Cf. A189326.

Formula

Empirical: a(n) = 6*n^2 + 34*n - 264 for n>8.
Empirical g.f.: x*(10 - 12*x + 12*x^2 + 8*x^4 + 5*x^5 + 4*x^6 - 5*x^7 - 5*x^8 - 4*x^9 - x^10) / (1 - x)^3. - Colin Barker, May 02 2018

A189324 Number of nondecreasing arrangements of n+2 numbers in 0..7 with the last equal to 7 and each after the second equal to the sum of one or two of the preceding four.

Original entry on oeis.org

11, 17, 31, 51, 91, 157, 253, 374, 509, 649, 789, 929, 1069, 1209, 1349, 1489, 1629, 1769, 1909, 2049, 2189, 2329, 2469, 2609, 2749, 2889, 3029, 3169, 3309, 3449, 3589, 3729, 3869, 4009, 4149, 4289, 4429, 4569, 4709, 4849, 4989, 5129, 5269, 5409, 5549
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2011

Keywords

Comments

Column 7 of A189326.

Examples

			Some solutions for n=3:
..1....7....2....2....1....3....3....1....1....3....1....1....1....4....1....1
..4....7....5....5....3....4....4....3....3....7....6....3....5....7....2....5
..5....7....5....5....4....7....4....4....3....7....7....4....6....7....3....6
..6....7....5....7....7....7....7....5....4....7....7....4....6....7....5....7
..7....7....7....7....7....7....7....7....7....7....7....7....7....7....7....7
		

Crossrefs

Cf. A189326.

Formula

Empirical: a(n) = 140*n - 751 for n>8.
Empirical g.f.: x*(11 - 5*x + 8*x^2 + 6*x^3 + 20*x^4 + 26*x^5 + 30*x^6 + 25*x^7 + 14*x^8 + 5*x^9) / (1 - x)^2. - Colin Barker, May 02 2018

A189325 Number of nondecreasing arrangements of n+2 numbers in 0..8 with the last equal to 8 and each after the second equal to the sum of one or two of the preceding four.

Original entry on oeis.org

13, 24, 49, 95, 179, 321, 548, 866, 1267, 1733, 2248, 2806, 3408, 4056, 4752, 5498, 6296, 7148, 8056, 9022, 10048, 11136, 12288, 13506, 14792, 16148, 17576, 19078, 20656, 22312, 24048, 25866, 27768, 29756, 31832, 33998, 36256, 38608, 41056, 43602
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2011

Keywords

Comments

Column 8 of A189326.

Examples

			Some solutions for n=3:
..2....0....1....1....2....7....2....4....3....1....0....4....1....3....3....2
..4....4....6....3....6....8....3....4....5....4....4....4....7....5....4....4
..6....4....7....4....8....8....3....4....5....4....4....4....7....5....4....4
..8....4....7....4....8....8....5....8....8....5....8....4....8....5....4....6
..8....8....8....8....8....8....8....8....8....8....8....8....8....8....8....8
		

Crossrefs

Cf. A189326.

Formula

Empirical: a(n) = (1/3)*n^3 + 10*n^2 + (587/3)*n - 1558 for n>10.
Empirical g.f.: x*(13 - 28*x + 31*x^2 - 9*x^3 + 10*x^4 + 3*x^5 + 7*x^6 - 21*x^7 - 14*x^8 - 10*x^9 + 2*x^10 + 10*x^11 + 7*x^12 + x^13) / (1 - x)^4. - Colin Barker, May 02 2018

A189328 Number of nondecreasing arrangements of 5 numbers in 0..n with the last equal to n and each after the second equal to the sum of one or two of the preceding four.

Original entry on oeis.org

2, 8, 11, 20, 21, 36, 31, 49, 42, 63, 51, 79, 60, 93, 72, 105, 80, 125, 89, 133, 104, 149, 109, 168, 117, 178, 135, 190, 138, 213, 147, 219, 166, 234, 166, 257, 176, 263, 197, 274, 196, 303, 205, 304, 227, 319, 225, 346, 234, 347, 259, 360, 254, 392, 262, 389, 290, 404
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2011

Keywords

Comments

Row 3 of A189326.

Examples

			All solutions for n=3:
..1....1....1....1....0....1....3....0....2....1....1
..2....2....3....2....1....1....3....3....3....1....1
..2....2....3....3....1....2....3....3....3....2....1
..3....2....3....3....2....3....3....3....3....2....2
..3....3....3....3....3....3....3....3....3....3....3
		

Crossrefs

Cf. A189326.

Formula

Empirical: a(n) = -3*a(n-1) -5*a(n-2) -5*a(n-3) -2*a(n-4) +3*a(n-5) +8*a(n-6) +10*a(n-7) +8*a(n-8) +3*a(n-9) -2*a(n-10) -5*a(n-11) -5*a(n-12) -3*a(n-13) -a(n-14).
Empirical g.f.: x*(2 + 14*x + 45*x^2 + 103*x^3 + 180*x^4 + 264*x^5 + 326*x^6 + 350*x^7 + 322*x^8 + 258*x^9 + 173*x^10 + 97*x^11 + 40*x^12 + 11*x^13) / ((1 - x)^2*(1 + x)^2*(1 + x^2)*(1 + x + x^2)^2*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, May 02 2018

A189329 Number of nondecreasing arrangements of 6 numbers in 0..n with the last equal to n and each after the second equal to the sum of one or two of the preceding four.

Original entry on oeis.org

2, 10, 16, 32, 33, 64, 51, 95, 76, 122, 91, 166, 102, 185, 141, 214, 137, 272, 155, 277, 201, 304, 191, 380, 199, 366, 272, 396, 237, 480, 253, 462, 335, 483, 286, 593, 299, 545, 403, 584, 335, 684, 353, 648, 465, 660, 388, 808, 395, 726, 531, 767, 435, 896, 456, 826
Offset: 1

Views

Author

R. H. Hardin Apr 20 2011

Keywords

Comments

Row 4 of A189326

Examples

			All solutions for n=3
..1....0....1....0....1....2....0....1....1....1....1....0....1....1....1....3
..2....1....2....3....3....3....1....1....1....1....2....1....1....1....1....3
..2....1....3....3....3....3....1....2....2....1....2....1....1....1....2....3
..3....2....3....3....3....3....2....2....3....1....2....1....2....2....2....3
..3....3....3....3....3....3....2....2....3....2....3....2....3....2....3....3
..3....3....3....3....3....3....3....3....3....3....3....3....3....3....3....3
		

Formula

Empirical: a(n) = -4*a(n-1) -11*a(n-2) -24*a(n-3) -45*a(n-4) -74*a(n-5) -110*a(n-6) -149*a(n-7) -185*a(n-8) -210*a(n-9) -216*a(n-10) -196*a(n-11) -146*a(n-12) -67*a(n-13) +35*a(n-14) +149*a(n-15) +261*a(n-16) +355*a(n-17) +418*a(n-18) +440*a(n-19) +418*a(n-20) +355*a(n-21) +261*a(n-22) +149*a(n-23) +35*a(n-24) -67*a(n-25) -146*a(n-26) -196*a(n-27) -216*a(n-28) -210*a(n-29) -185*a(n-30) -149*a(n-31) -110*a(n-32) -74*a(n-33) -45*a(n-34) -24*a(n-35) -11*a(n-36) -4*a(n-37) -a(n-38)
Showing 1-10 of 14 results. Next