cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189328 Number of nondecreasing arrangements of 5 numbers in 0..n with the last equal to n and each after the second equal to the sum of one or two of the preceding four.

Original entry on oeis.org

2, 8, 11, 20, 21, 36, 31, 49, 42, 63, 51, 79, 60, 93, 72, 105, 80, 125, 89, 133, 104, 149, 109, 168, 117, 178, 135, 190, 138, 213, 147, 219, 166, 234, 166, 257, 176, 263, 197, 274, 196, 303, 205, 304, 227, 319, 225, 346, 234, 347, 259, 360, 254, 392, 262, 389, 290, 404
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2011

Keywords

Comments

Row 3 of A189326.

Examples

			All solutions for n=3:
..1....1....1....1....0....1....3....0....2....1....1
..2....2....3....2....1....1....3....3....3....1....1
..2....2....3....3....1....2....3....3....3....2....1
..3....2....3....3....2....3....3....3....3....2....2
..3....3....3....3....3....3....3....3....3....3....3
		

Crossrefs

Cf. A189326.

Formula

Empirical: a(n) = -3*a(n-1) -5*a(n-2) -5*a(n-3) -2*a(n-4) +3*a(n-5) +8*a(n-6) +10*a(n-7) +8*a(n-8) +3*a(n-9) -2*a(n-10) -5*a(n-11) -5*a(n-12) -3*a(n-13) -a(n-14).
Empirical g.f.: x*(2 + 14*x + 45*x^2 + 103*x^3 + 180*x^4 + 264*x^5 + 326*x^6 + 350*x^7 + 322*x^8 + 258*x^9 + 173*x^10 + 97*x^11 + 40*x^12 + 11*x^13) / ((1 - x)^2*(1 + x)^2*(1 + x^2)*(1 + x + x^2)^2*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, May 02 2018