A189337 Number of nX3 binary arrays without the pattern 1 0 0 1 diagonally, vertically, antidiagonally or horizontally.
8, 64, 512, 3375, 21952, 140608, 912673, 5929741, 38614472, 251239591, 1634691752, 10633486599, 69173457625, 449983383247, 2927275422625, 19042718961664, 123878371625000, 805862864751112, 5242361459792813, 34103003909455872
Offset: 1
Keywords
Examples
Some solutions for 4X3 ..0..1..0....0..0..0....0..0..1....0..0..0....1..1..1....1..0..1....1..1..0 ..0..1..1....1..1..1....1..1..0....0..0..0....1..0..1....0..1..1....1..1..1 ..0..1..1....0..0..1....0..1..0....0..0..0....1..1..0....1..0..1....0..1..1 ..1..1..1....0..0..0....1..0..0....0..1..0....0..1..1....0..0..1....1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
A049864(n+2) cubed
Formula
Empirical: a(n) = 7*a(n-1) -41*a(n-3) +130*a(n-4) +81*a(n-6) -369*a(n-7) -73*a(n-8) -173*a(n-9) +243*a(n-10) +211*a(n-11) -77*a(n-12) +117*a(n-13) +81*a(n-14) +20*a(n-16) +13*a(n-17) +a(n-19) +a(n-20)
Comments