cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A189336 Number of nX2 binary arrays without the pattern 1 0 0 1 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

4, 16, 64, 225, 784, 2704, 9409, 32761, 114244, 398161, 1387684, 4835601, 16851025, 58721569, 204633025, 713103616, 2485022500, 8659791364, 30177596089, 105162706944, 366470415424, 1277074025929, 4450340433889, 15508521343396
Offset: 1

Views

Author

R. H. Hardin Apr 20 2011

Keywords

Comments

Column 2 of A189343

Examples

			Some solutions for 4X2
..0..0....1..0....1..0....0..0....1..0....0..1....0..0....0..1....1..1....0..0
..1..1....1..0....0..0....1..0....1..0....0..1....1..1....1..0....0..1....1..1
..0..0....1..0....1..0....0..1....0..1....0..1....1..0....0..1....1..0....1..1
..0..1....0..1....1..1....0..1....1..1....0..0....0..1....1..0....0..1....1..1
		

Crossrefs

A049864(n+2) squared

Formula

Empirical: a(n) = 4*a(n-1) -a(n-2) -6*a(n-3) +12*a(n-4) -3*a(n-5) +3*a(n-6) -6*a(n-7) +a(n-8) -a(n-9) +a(n-10)

A189337 Number of nX3 binary arrays without the pattern 1 0 0 1 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

8, 64, 512, 3375, 21952, 140608, 912673, 5929741, 38614472, 251239591, 1634691752, 10633486599, 69173457625, 449983383247, 2927275422625, 19042718961664, 123878371625000, 805862864751112, 5242361459792813, 34103003909455872
Offset: 1

Views

Author

R. H. Hardin Apr 20 2011

Keywords

Comments

Column 3 of A189343

Examples

			Some solutions for 4X3
..0..1..0....0..0..0....0..0..1....0..0..0....1..1..1....1..0..1....1..1..0
..0..1..1....1..1..1....1..1..0....0..0..0....1..0..1....0..1..1....1..1..1
..0..1..1....0..0..1....0..1..0....0..0..0....1..1..0....1..0..1....0..1..1
..1..1..1....0..0..0....1..0..0....0..1..0....0..1..1....0..0..1....1..1..1
		

Crossrefs

A049864(n+2) cubed

Formula

Empirical: a(n) = 7*a(n-1) -41*a(n-3) +130*a(n-4) +81*a(n-6) -369*a(n-7) -73*a(n-8) -173*a(n-9) +243*a(n-10) +211*a(n-11) -77*a(n-12) +117*a(n-13) +81*a(n-14) +20*a(n-16) +13*a(n-17) +a(n-19) +a(n-20)

A189339 Number of nX5 binary arrays without the pattern 1 0 0 1 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

28, 784, 21952, 390721, 6814820, 109746642, 1857004061, 31177656076, 533269057178, 9053472938552, 154252966185542, 2618674812680579, 44520074517291894, 756141322418868556, 12851400623635035810
Offset: 1

Views

Author

R. H. Hardin Apr 20 2011

Keywords

Comments

Column 5 of A189343

Examples

			Some solutions for 4X5
..0..0..1..0..0....0..1..1..0..1....0..0..1..1..0....0..0..0..0..0
..0..1..0..1..0....0..0..0..1..1....0..1..1..1..1....0..1..1..1..0
..1..0..1..1..0....0..0..1..1..1....0..0..0..0..1....0..0..0..1..0
..0..0..1..0..1....0..0..1..0..1....1..0..1..0..0....0..1..1..0..1
		

A189338 Number of nX4 binary arrays without the pattern 1 0 0 1 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

15, 225, 3375, 36626, 390721, 3988168, 42069350, 442969881, 4709354541, 49857094654, 528436125424, 5591212296038, 59196669906872, 626540356943069, 6633322246811551, 70220475509151710, 743409267344795743
Offset: 1

Views

Author

R. H. Hardin Apr 20 2011

Keywords

Comments

Column 4 of A189343

Examples

			Some solutions for 5X4
..0..0..0..1....0..0..0..1....0..0..1..0....0..0..0..1....0..0..0..1
..1..0..1..0....0..0..1..0....0..0..1..0....0..1..1..0....0..0..0..0
..1..0..0..0....0..0..1..1....0..1..0..1....0..0..1..0....0..0..0..1
..0..0..1..0....0..1..0..0....1..0..1..0....1..1..1..0....0..1..1..0
..0..0..0..0....1..1..0..0....1..1..0..1....1..1..0..0....0..0..0..0
		

A189340 Number of n X 6 binary arrays without the pattern 1 0 0 1 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

52, 2704, 140608, 3988168, 109746642, 2650369322, 68439605144, 1732402041622, 45288523287014, 1169200527259744, 30459419241960870, 788089712516187485, 20460101431991974234, 529811400562012142385, 13741195617567627797520
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2011

Keywords

Comments

Column 6 of A189343.

Examples

			Some solutions for 4 X 6:
..0..0..0..1..1..0....0..0..0..0..1..0....0..0..0..0..1..0....0..0..1..1..0..1
..0..0..1..0..0..0....0..0..1..1..1..1....0..0..0..1..0..1....0..0..0..1..1..0
..0..1..1..1..0..1....0..1..1..1..0..1....0..0..1..1..0..1....0..1..1..1..0..1
..0..0..0..1..0..1....0..0..0..1..1..0....0..1..0..0..0..1....0..0..0..1..0..0
		

A189341 Number of nX7 binary arrays without the pattern 1 0 0 1 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

97, 9409, 912673, 42069350, 1857004061, 68439605144, 2739456017053, 106150557957909, 4311950202672542, 172004809421325314, 6968408164659864073, 279225921295911354381, 11255564881813924496670, 451571763353227520521337
Offset: 1

Views

Author

R. H. Hardin Apr 20 2011

Keywords

Comments

Column 7 of A189343

Examples

			Some solutions for 4X7
..0..0..0..1..1..1..1....0..0..0..1..0..1..0....0..0..0..0..0..0..0
..0..0..0..0..1..1..0....0..0..0..1..0..1..1....0..0..0..1..0..1..0
..0..0..0..1..0..1..0....0..0..0..0..1..1..0....0..0..0..1..1..1..1
..0..0..1..0..1..0..0....0..0..0..1..0..1..1....0..0..1..0..1..0..0
		

A189335 Number of n X n binary arrays without the pattern 1 0 0 1 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

2, 16, 512, 36626, 6814820, 2650369322, 2739456017053, 6190300153637745
Offset: 1

Views

Author

R. H. Hardin Apr 20 2011

Keywords

Comments

Diagonal of A189343

Examples

			Some solutions for 4X4
..0..1..0..0....0..1..0..0....1..1..1..1....0..1..0..1....1..1..0..0
..0..0..0..0....1..0..0..0....0..0..1..1....0..1..0..1....1..0..0..0
..0..1..1..0....1..0..0..0....0..0..0..0....0..1..0..1....1..1..1..0
..0..1..0..0....1..0..1..0....0..0..0..0....1..0..1..0....0..1..1..1
		

A189342 Number of nX8 binary arrays without the pattern 1 0 0 1 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

181, 32761, 5929741, 442969881, 31177656076, 1732402041622, 106150557957909, 6190300153637745
Offset: 1

Views

Author

R. H. Hardin Apr 20 2011

Keywords

Comments

Column 8 of A189343

Examples

			Some solutions for 4X8
..0..0..0..0..0..0..0..1....0..0..0..0..0..0..0..1....0..0..0..0..0..1..0..1
..0..0..0..0..0..1..0..1....0..0..0..0..1..1..1..1....0..0..0..0..1..0..1..1
..0..0..0..1..0..0..0..0....0..0..0..0..0..1..1..1....0..0..0..1..0..1..0..1
..0..0..0..1..0..0..0..0....0..0..0..1..1..0..1..0....0..0..0..0..1..1..1..0
		
Showing 1-8 of 8 results.