cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A175383 Number of complete quadrangles on an n X n grid (or geoplane).

Original entry on oeis.org

0, 1, 78, 1278, 9498, 47331, 175952, 545764, 1461672, 3507553, 7701638, 15773526, 30375194, 55695587, 97777392, 165310348, 270478344, 430196181, 666685134, 1010083690, 1498720098, 2182544223
Offset: 1

Views

Author

Martin Renner, Apr 19 2011

Keywords

Comments

A complete quadrangle is a set of four points, no three collinear, and the six lines which join them.
Number of ways to arrange 4 indistinguishable points on an n X n square grid so that no three points are collinear at any angle. Column 4 of A194193. - R. H. Hardin, Aug 18 2011

Examples

			From _R. H. Hardin_, Aug 18 2011: (Start)
Some solutions for 3 X 3:
  0 1 1   1 1 0   1 0 1   0 1 1   0 0 0   1 1 0   1 1 0
  1 0 0   0 0 0   1 0 0   1 1 0   1 1 0   0 0 1   1 0 0
  1 0 0   1 0 1   0 0 1   0 0 0   0 1 1   0 1 0   0 1 0
(End)
		

Formula

a(n) = A189345(n) - A189346(n) - A178256(n).
a(n) = (1/3)*A189412(n) + A189413(n).

Extensions

a(6)-a(22) from Nathaniel Johnston, Apr 25 2011
a(7)-a(22) corrected by Nathaniel Johnston, based on another correction by Michal ForiĊĦek, Sep 06 2011

A189345 Number of ways to choose four points in an n X n grid (or geoplane).

Original entry on oeis.org

0, 1, 126, 1820, 12650, 58905, 211876, 635376, 1663740, 3921225, 8495410, 17178876, 32795126, 59626385, 103962600, 174792640, 284660376, 450710001, 695946630, 1050739900, 1554599970, 2258257001, 3226076876, 4538847600, 6296972500, 8624108025, 11671285626
Offset: 1

Views

Author

Martin Renner, Apr 20 2011

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) binomial(n^2, 4) end: seq(a(n), n=1..35);
  • Maxima
    makelist(binomial(n^2, 4), n, 1, 56); /* Martin Ettl, Oct 15 2012 */

Formula

a(n) = binomial(n^2,4) = (1/24)*n^2*(n^2-1)*(n^2-2)*(n^2-3).
G.f.: x^2*(1+x)*(1+116*x+606*x^2+116*x^3+x^4)/(1-x)^9. - Colin Barker, Jan 19 2012
Showing 1-2 of 2 results.