cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A189429 Number of n X 3 array permutations with each element not moving, or moving one space N, SW or SE.

Original entry on oeis.org

1, 3, 9, 31, 109, 367, 1245, 4247, 14453, 49167, 167325, 569447, 1937829, 6594495, 22441517, 76369751, 259890293, 884421039, 3009733885, 10242290119, 34855077573, 118613751711, 403649138125, 1373640273207, 4674573594645
Offset: 1

Views

Author

R. H. Hardin, Apr 22 2011

Keywords

Comments

Column 3 of A189435.

Examples

			Some solutions for 4 X 3:
..0..4..5....0..4..5....0..1..2....3..1..2....0..4..2....0..4..5....0..1..2
..6..2..1....1..2..8....3..7..5....6..0..5....1..7..5....3..2..1....3..4..5
..9..3..8....6..3.11....6.10..4....4.10.11....6..3..8....6..7..8....9.10..8
..7.10.11....9.10..7....9..8.11....9..8..7....9.10.11....9.10.11....7..6.11
		

Crossrefs

Cf. A189435.

Formula

Empirical: a(n) = a(n-1) +4*a(n-2) +10*a(n-3) +12*a(n-4) +8*a(n-5).
Empirical g.f.: x*(1 + 2*x + 2*x^2) / (1 - x - 4*x^2 - 10*x^3 - 12*x^4 - 8*x^5). - Colin Barker, May 02 2018

A189430 Number of nX4 array permutations with each element not moving, or moving one space N, SW or SE.

Original entry on oeis.org

1, 5, 29, 140, 841, 4653, 26589, 151081, 859264, 4891841, 27832869, 158410277, 901506585, 5130598532, 29198860965, 166174106629, 945717892865, 5382196223185, 30630747783536, 174323378425833, 992095956013449
Offset: 1

Views

Author

R. H. Hardin Apr 22 2011

Keywords

Comments

Column 4 of A189435

Examples

			Some solutions for 3X4
..0..5..6..3....0..1..2..3....0..1..6..3....0..5..6..3....4..1..6..3
..1..9.10..2....8..9..6..7....8..9.10..2....4..2..1..7....8..0.10..2
..8..4..7.11....5..4.10.11....5..4..7.11....8..9.10.11....5..9..7.11
		

Formula

Empirical: a(n) = 4*a(n-1) +6*a(n-2) +15*a(n-3) +32*a(n-4) +31*a(n-5) -139*a(n-6) -38*a(n-7) -687*a(n-8) -1137*a(n-9) -2150*a(n-10) -2761*a(n-11) -2277*a(n-12) -6462*a(n-13) -713*a(n-14) -1533*a(n-15) +1533*a(n-17) +713*a(n-18) +6462*a(n-19) +2277*a(n-20) +2761*a(n-21) +2150*a(n-22) +1137*a(n-23) +687*a(n-24) +38*a(n-25) +139*a(n-26) -31*a(n-27) -32*a(n-28) -15*a(n-29) -6*a(n-30) -4*a(n-31) +a(n-32)

A189431 Number of nX5 array permutations with each element not moving, or moving one space N, SW or SE.

Original entry on oeis.org

1, 8, 65, 571, 5680, 52241, 493941, 4681376, 44341381, 420325171, 3983969024, 37773176577, 358128315977, 3395458162288, 32193312416793, 305234770125411, 2894031473957664, 27439272582314225, 260161002358646165
Offset: 1

Views

Author

R. H. Hardin Apr 22 2011

Keywords

Comments

Column 5 of A189435

Examples

			Some solutions for 3X5
..5..1..2..8..9....0..1..2..3..4....0..1..2..3..4....0..1..2..8..4
.10..0..7..4..3....5..6.12.13..9....5.11.12.13.14...10.11..3.13..9
..6.11.12.13.14...10.11..8..7.14...10..7..6..9..8....6..5.12..7.14
		

Formula

Empirical: a(n) = 9*a(n-1) -a(n-2) +88*a(n-3) -133*a(n-4) -1241*a(n-5) -6173*a(n-6) +1260*a(n-7) -35412*a(n-8) +81872*a(n-9) +143920*a(n-10) -260064*a(n-11) +2649517*a(n-12) -4380197*a(n-13) -10792671*a(n-14) +17380340*a(n-15) +17309201*a(n-16) +82171225*a(n-17) -34858151*a(n-18) -315791376*a(n-19) +66797872*a(n-20) -231978696*a(n-21) +734413152*a(n-22) +760013432*a(n-23) -1058202998*a(n-24) -2085612850*a(n-25) -7191772318*a(n-26) +7045350632*a(n-27) +3638845930*a(n-28) +3481732186*a(n-29) +8643493314*a(n-30) -7150172088*a(n-31) +12002114312*a(n-32) -17160930824*a(n-33) -1460727184*a(n-34) +58198351544*a(n-35) -1772883650*a(n-36) -13721600534*a(n-37) +7148283886*a(n-38) -31542922592*a(n-39) -28065877170*a(n-40) -27375326650*a(n-41) -29235699066*a(n-42) -15582339728*a(n-43) -48617808*a(n-44) +4434566056*a(n-45) -693712320*a(n-46) +2141282408*a(n-47) +2851911223*a(n-48) +1535350953*a(n-49) -85925633*a(n-50) -94378304*a(n-51) +529827963*a(n-52) -125838145*a(n-53) -233700005*a(n-54) -61208340*a(n-55) +22857068*a(n-56) +42821976*a(n-57) +4528704*a(n-58) -1484088*a(n-59) +1003221*a(n-60) -1054917*a(n-61) -305775*a(n-62) -6804*a(n-63) -63423*a(n-64) +6561*a(n-65) +6561*a(n-66)

A189432 Number of nX6 array permutations with each element not moving, or moving one space N, SW or SE.

Original entry on oeis.org

1, 13, 181, 2413, 40065, 606201, 9557077, 150278792, 2367212857, 37358187521, 589449930573, 9305507958493, 146913309982185, 2319624020512093, 36626205645266813, 578327113990185529, 9131891816444663056
Offset: 1

Views

Author

R. H. Hardin Apr 22 2011

Keywords

Comments

Column 6 of A189435

Examples

			Some solutions for 3X6
..6..1..2..9.10..5....6..7..2..3.10.11....6..7..8..3..4..5....0..7..8..9.10.11
.12..0..8..4..3.11....1..0..8..9..5..4....1..0.14..2.10.11....1.13..3..2..5..4
..7.13.14.15.16.17...12.13.14.15.16.17...12.13..9.15.16.17...12..6.14.15.16.17
		

A189433 Number of n X 7 array permutations with each element not moving, or moving one space N, SW or SE.

Original entry on oeis.org

1, 21, 441, 10069, 278105, 6944573, 181540773, 4742833745, 124239687001, 3261208487441, 85625162598265, 2250063012268697, 59139108575177913, 1554641730277194809, 40872537373376873929, 1074626580793742218601
Offset: 1

Views

Author

R. H. Hardin, Apr 22 2011

Keywords

Comments

Column 7 of A189435.

Examples

			Some solutions for 3 X 7
..0..1..2..3..4.12..6....0..1..9.10.11..5..6....7..8..9.10..4..5.13
.14.15.16.17..5.19.13....7..8..3..2.18..4.13....1..0..3..2.11..6.20
..8..7.10..9.18.11.20...14.15.16.17.12.19.20...14.15.16.17.18.19.12
		

Crossrefs

Cf. A189435.

A189434 Number of nX8 array permutations with each element not moving, or moving one space N, SW or SE.

Original entry on oeis.org

1, 34, 1165, 42205, 1940868, 79826592, 3467525301, 150293731826, 6540976400913, 285499775348185, 12468705796935816, 545183904690537217, 23847514960230618480, 1043490861604911009586, 45668994694128002511925
Offset: 1

Views

Author

R. H. Hardin Apr 22 2011

Keywords

Comments

Column 8 of A189435

Examples

			Some solutions for 3X8
..8..9.10.11..4.13.14..7....0..1..2..3..4..5..6..7....0..1..2..3..4..5..6..7
..1..0..3..2..5.21.22..6...16.17.18.19.12.13.22.23....8..9.18.19.12.13.14.15
.16.17.18.19.20.12.15.23....9..8.11.10.20.21.15.14...16.17.11.10.20.21.22.23
		

A189436 Number of 4 X n array permutations with each element not moving, or moving one space N, SW or SE.

Original entry on oeis.org

1, 9, 31, 140, 571, 2413, 10069, 42205, 176624, 739573, 3096173, 12962845, 54270579, 227212636, 951259751, 3982596009, 16673747193, 69807202249, 292258553696, 1223585260409, 5122727328297, 21447083573633, 89791504401207
Offset: 1

Views

Author

R. H. Hardin, Apr 22 2011

Keywords

Comments

Row 4 of A189435.

Examples

			Some solutions for 4 X 3:
..0..1..5....0..1..2....0..4..5....3..4..2....0..4..5....0..4..5....0..4..5
..6..2..8....3..4..5....3..2..1....1..0..5....3..2..1....6..2..1....1..2..8
..4..3.11....9.10..8....9.10..8....6..7..8....6.10.11....9..3..8....6..3.11
..9.10..7....7..6.11....7..6.11....9.10.11....9..8..7....7.10.11....9.10..7
		

Crossrefs

Cf. A189435.

Formula

Empirical: a(n) = 4*a(n-1) +2*a(n-2) -6*a(n-3) +4*a(n-4) -a(n-5).
Empirical g.f.: x*(1 + 5*x - 7*x^2 + 4*x^3 - x^4) / (1 - 4*x - 2*x^2 + 6*x^3 - 4*x^4 + x^5). - Colin Barker, May 02 2018

A189437 Number of 5 X n array permutations with each element not moving, or moving one space N, SW or SE.

Original entry on oeis.org

1, 20, 109, 841, 5680, 40065, 278105, 1940868, 13518605, 94223329, 656569824, 4575509121, 31884910129, 222195588532, 1548403370477, 10790295445561, 75193858910224, 524000231073025, 3651577819301001, 25446593414689700
Offset: 1

Views

Author

R. H. Hardin, Apr 22 2011

Keywords

Comments

Row 5 of A189435.

Examples

			Some solutions for 5 X 3:
..0..4..5....3..4..2....3..1..2....0..1..2....0..4..5....3..4..2....3..4..2
..6..2..1....1..0..5....6..0..8....3..4..8....6..2..1....1..0..8....1..0..8
..9..3..8....6..7.11....4..5.11....6..5.11....9..3.11....6..5.11....6..5.11
..7.13.14....9..8.14....9.10..7...12.13..7...12..8..7...12.13..7....7.13.14
.12.11.10...12.13.10...12.13.14...10..9.14...10.13.14...10..9.14...12..9.10
		

Crossrefs

Cf. A189435.

Formula

Empirical: a(n) = 10*a(n-1) -17*a(n-2) -47*a(n-3) +138*a(n-4) -75*a(n-5).
Empirical g.f.: x*(1 - x)*(1 + 11*x - 63*x^2 + 75*x^3) / (1 - 10*x + 17*x^2 + 47*x^3 - 138*x^4 + 75*x^5). - Colin Barker, May 02 2018

A189438 Number of 6Xn array permutations with each element not moving, or moving one space N, SW or SE.

Original entry on oeis.org

1, 41, 367, 4653, 52241, 606201, 6944573, 79826592, 916320775, 10522129613, 120807652475, 1387081546065, 15925843986549, 182854110096077, 2099453348053203, 24105043866210197, 276763962980421232
Offset: 1

Views

Author

R. H. Hardin Apr 22 2011

Keywords

Comments

Row 6 of A189435

Examples

			Some solutions for 6X3
..0..1..2....3..1..2....0..4..5....3..1..2....0..4..5....0..1..2....0..1..2
..3..4..5....6..0..5....6..2..1....6..0..5....3..2..1....3..4..5....3..7..5
..6..7.11....9.10..4....9..3.11....9..7..4....6..7.11....6.10.11....4.10..8
..9..8.14....7..8.11....7..8.14...12..8.14....9..8.14....9..8..7...12..6.11
.12.13.10...12.13.14...15.16.10...10.11.17...10.16.17...15.16.14...15..9.14
.15.16.17...15.16.17...13.12.17...15.16.13...15.12.13...13.12.17...13.16.17
		

Formula

Empirical: a(n) = 15*a(n-1) -23*a(n-2) -262*a(n-3) +680*a(n-4) +550*a(n-5) -1875*a(n-6) +1927*a(n-7) -3037*a(n-8) +822*a(n-9) -652*a(n-10) +98*a(n-11) -33*a(n-12) +3*a(n-13) +a(n-14)

A189439 Number of 7Xn array permutations with each element not moving, or moving one space N, SW or SE.

Original entry on oeis.org

1, 85, 1245, 26589, 493941, 9557077, 181540773, 3467525301, 66045131269, 1258981901653, 23988387057381, 457127606313333, 8710469146675973, 165979359956189589, 3162723963901817637, 60265641669988070325
Offset: 1

Views

Author

R. H. Hardin Apr 22 2011

Keywords

Comments

Row 7 of A189435

Examples

			Some solutions for 7X3
..0..1..2....3..1..2....3..1..2....0..1..2....0..1..2....3..4..2....0..1..2
..3..7..8....6..0..5....6..0..5....3..4..5....3..4..5....1..0..5....6..7..5
..6..5..4....9..7..4....4.10.11....6..7..8....6..7.11....6.10.11....4..3..8
..9.13.14...12..8.14....9..8..7...12.13.11...12..8.14....7..8.14....9.13.14
.12.11.10...15.11.10...12.13.17...10..9.14...15..9.10...12..9.17...12.11.10
.15.19.20...13.19.20...15.14.20...15.19.20...18.19.13...18.19.13...18.19.17
.18.17.16...18.17.16...18.19.16...18.17.16...16.17.20...16.15.20...16.15.20
		

Formula

Empirical: a(n) = 23*a(n-1) +26*a(n-2) -2256*a(n-3) +3272*a(n-4) +63936*a(n-5) -101752*a(n-6) -714624*a(n-7) +1041216*a(n-8) +3522752*a(n-9) -4444032*a(n-10) -7691264*a(n-11) +5545472*a(n-12) +11157504*a(n-13) -4947968*a(n-14) -4030464*a(n-15)
Showing 1-10 of 12 results. Next