A189450 Number of 2 X n array permutations with each element moving zero or one space horizontally or diagonally.
1, 5, 16, 61, 225, 841, 3136, 11705, 43681, 163021, 608400, 2270581, 8473921, 31625105, 118026496, 440480881, 1643897025, 6135107221, 22896531856, 85451020205, 318907548961, 1190179175641, 4441809153600, 16577057438761
Offset: 1
Keywords
Examples
Some solutions for 2 X 3: ..4..5..2....0..5..2....0..1..2....1..0..2....0..2..1....0..1..2....4..2..1 ..3..0..1....3..4..1....4..3..5....4..3..5....3..4..5....3..4..5....3..0..5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A189449.
Formula
Empirical: a(n) = 4*a(n-1) -4*a(n-3) +a(n-4).
Conjectures from Colin Barker, May 02 2018: (Start)
G.f.: x*(1 + x - 4*x^2 + x^3) / ((1 - x)*(1 + x)*(1 - 4*x + x^2)).
a(n) = ((2-sqrt(3))^(n+1) + (2+sqrt(3))^(n+1) + 8) / 12 for n even.
a(n) = (-2+(2-sqrt(3))^(1+n) + (2+sqrt(3))^(1+n)) / 12 for n odd.
(End)
Comments