cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189498 T(n,k)=Number of arrangements of n+1 nonzero numbers x(i) in -k..k with the sum of floor(x(i)/x(i+1)) equal to zero.

Original entry on oeis.org

0, 2, 4, 6, 12, 0, 12, 38, 42, 12, 20, 78, 152, 136, 0, 30, 148, 462, 928, 550, 40, 42, 240, 1088, 3388, 4920, 1892, 0, 56, 380, 2128, 9394, 24806, 27508, 7384, 140, 72, 554, 3850, 22088, 85480, 182634, 152358, 26816, 0, 90, 788, 6474, 45892, 238836, 787412
Offset: 1

Views

Author

R. H. Hardin Apr 23 2011

Keywords

Comments

Table starts
...0......2........6........12.........20..........30...........42...........56
...4.....12.......38........78........148.........240..........380..........554
...0.....42......152.......462.......1088........2128.........3850.........6474
..12....136......928......3388.......9394.......22088........45892........86416
...0....550.....4920.....24806......85480......238836.......567774......1218778
..40...1892....27508....182634.....787412.....2642358......7269852.....17692662
...0...7384...152358...1350418....7250142....29261538.....93830584....260746932
.140..26816...852940..10077438...67449574...326423068...1218634086...3870426602
...0.103288..4796962..75593372..630466648..3664621084..15936391068..57837221756
.504.386928.27117826.569975518.5926141678.41363200538.209537582772.869215927390

Examples

			Some solutions for n=7 k=5
.-5...-5...-5...-5...-5...-4...-5...-5...-5...-4...-5...-5...-5...-5...-5...-5
.-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5
..3...-4....5....2....3...-4....4...-4...-3...-5....5....5....1....1....3....3
.-4....3...-4...-3....2...-3....3....5....1...-3...-4....2....4....2....1....2
.-2....2...-1...-4...-1...-5....1....4....1...-4...-2...-5....2....2...-1....5
..4....5...-3....4...-5...-2...-2....3....2...-5....2....3...-5...-4...-5...-5
..3...-2....2....2...-4....5...-4...-1....2....3....3....5...-5...-1....3...-2
..5...-1....5....1...-4...-2....3...-4...-4....4....3....5...-2...-4....3....2
		

Crossrefs

Column 1 is A028329(n/2) for even n
Row 1 is A002378(n-1)