A189506 Irregular triangle read by rows in which row n (n >= 1) lists the base-10 lunar divisors of n.
1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7, 8, 9, 3, 4, 5, 6, 7, 8, 9, 4, 5, 6, 7, 8, 9, 5, 6, 7, 8, 9, 6, 7, 8, 9, 7, 8, 9, 8, 9, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41
Offset: 1
Examples
The first 11 rows give the divisors of 1 through 11: 1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 3 4 5 6 7 8 9 4 5 6 7 8 9 5 6 7 8 9 6 7 8 9 7 8 9 8 9 9 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29 31 32 33 34 35 36 37 38 39 41 ... 99 (= all zeroless 1- and 2-digit numbers).
Links
- D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic, arXiv:1107.1130 [math.NT], 2011. [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
- D. Applegate, M. LeBrun, N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.
- Index entries for sequences related to dismal (or lunar) arithmetic
Programs
-
PARI
A189506_row(n)={my(d=digits(n),m=vecmin(d),c=vector(#d,i,List()),K,t); for(L=1,#d,K=#d-L+1;forvec(v=vector(L,i,[max(m,i==1),9]), L<=K&& listput(c[L],fromdigits(v))&&next; t=fromdigits(v); forstep(i=#c[K],1,-1, A087062(c[K][i],t)==n||next; listput(c[L],t);break)); L>=K&&forstep(i=#c[K],1,-1,t=c[K][i]; forstep(j=#c[L],1,-1,A087062(c[L][j],t)==n&&next(2)); listpop(c[K],i))); Set(concat(c))} \\ M. F. Hasler, Nov 15 2018
Extensions
Minor edits by M. F. Hasler, Nov 15 2018