cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189545 T(n,k)=Number of arrangements of n+1 nonzero numbers x(i) in -k..k with the sum of trunc(x(i)/x(i+1)) equal to zero.

Original entry on oeis.org

0, 4, 4, 12, 8, 0, 24, 28, 44, 12, 40, 72, 192, 152, 0, 60, 152, 544, 964, 552, 40, 84, 264, 1340, 3664, 5416, 2000, 0, 112, 432, 2520, 11276, 26804, 31280, 7628, 140, 144, 660, 4620, 26152, 97836, 204544, 173792, 28440, 0, 180, 968, 7716, 56440, 274132, 911144
Offset: 1

Views

Author

R. H. Hardin Apr 23 2011

Keywords

Comments

Table starts
...0......4.......12........24.........40..........60...........84
...4......8.......28........72........152.........264..........432
...0.....44......192.......544.......1340........2520.........4620
..12....152......964......3664......11276.......26152........56440
...0....552.....5416.....26804......97836......274132.......683144
..40...2000....31280....204544.....911144.....3022220......8655424
...0...7628...173792...1526520....8485264....33638540....111406336
.140..28440...977092..11544464...80270588...379997096...1456853916
...0.108792..5562216..87396896..762015216..4324466328..19269747584
.504.411888.31839976.665272176.7245223968.49387377504.256327259704

Examples

			Some solutions for n=7 k=5
.-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-4...-5
.-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5
..1...-2...-2...-1....1...-5...-3....4....3...-4....3...-3....3....1...-4....3
..4....4....2...-3...-3....2....5...-1....5....4...-2....4....5...-1....3....3
..1...-1....3....2...-2...-3...-2....5...-5....3....3...-1....4...-2....4....3
.-3...-1...-1...-1...-3....1....5....2...-2....5....5....4....5...-5....3...-4
.-4....4...-1....3...-1...-3...-3....1....5...-2...-5....5....5...-1....4....5
..5....5....4...-1...-2...-1...-3....4...-4...-5...-2....2...-2....3...-3...-2
		

Crossrefs

Column 1 is A028329(n/2) for even n
Row 1 is A046092(n-1)