cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189584 Number of permutations of 1..n with displacements restricted to {-4,0,1,2,3}.

This page as a plain text file.
%I A189584 #7 Jun 02 2025 04:02:29
%S A189584 1,1,1,1,8,22,46,85,168,350,776,1787,3851,8141,17247,36921,79637,
%T A189584 172237,371343,797047,1710188,3673435,7899653,16995309,36552835,
%U A189584 78580754,168899252,363064232,780553896,1678245531,3608276813,7757481797
%N A189584 Number of permutations of 1..n with displacements restricted to {-4,0,1,2,3}.
%H A189584 R. H. Hardin, <a href="/A189584/b189584.txt">Table of n, a(n) for n = 1..200</a>
%F A189584 Empirical: a(n) = a(n-1) +2*a(n-3) +2*a(n-4) +4*a(n-5) +10*a(n-6) +13*a(n-7) -3*a(n-8) +3*a(n-9) -11*a(n-10) +2*a(n-11) +5*a(n-12) -31*a(n-13) -11*a(n-14) -10*a(n-15) -3*a(n-16) +3*a(n-17) +a(n-18) -28*a(n-19) +22*a(n-20) -18*a(n-21) +10*a(n-22) -3*a(n-23) -8*a(n-24) +5*a(n-25) -4*a(n-26) -3*a(n-27) +2*a(n-28) +3*a(n-30) +2*a(n-31) -a(n-32) +a(n-33) +a(n-35)
%e A189584 Some solutions for n=11
%e A189584 ..1....5....5....5....5....5....5....5....1....1....5....5....5....1....5....5
%e A189584 ..2....1....2....2....1....6....1....1....6....2....1....2....2....6....1....1
%e A189584 ..7....3....1....3....2....1....3....2....3....7....2....1....1....2....2....2
%e A189584 ..3....4....3....1....8....3....8....8....4....3....3....4....8....3....4....3
%e A189584 ..5....2....4....9....3....2....2....3....2....5....9....3....3....5....9....9
%e A189584 .10...10...10....4....6...10....4....4...10...10...10...10....4....4....3...10
%e A189584 ..4....6....7...11....4....4...11....6...11....4....4...11...11...11...11....4
%e A189584 ..8....8....6....8....7....7....7....7....5....6....7....7....7....8....7....6
%e A189584 ..6....7....8....6....9....9....6....9....7....8....6....6....6....7....6....7
%e A189584 ..9....9....9....7...10....8....9...10....9....9....8....9....9...10....8....8
%e A189584 .11...11...11...10...11...11...10...11....8...11...11....8...10....9...10...11
%K A189584 nonn
%O A189584 1,5
%A A189584 _R. H. Hardin_ Apr 24 2011