cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189590 Number of permutations of 1..n with displacements restricted to {-5,-4,-2,0,1,3}.

Original entry on oeis.org

1, 1, 2, 4, 13, 35, 93, 227, 499, 1185, 2823, 6809, 16640, 40117, 96797, 232099, 556269, 1338482, 3218538, 7747725, 18645571, 44845905, 107873385, 259405282, 623911219, 1500766461, 3609839279, 8683275206, 20886151010, 50237661120, 120837419260
Offset: 1

Views

Author

R. H. Hardin Apr 24 2011

Keywords

Examples

			Some solutions for n=9
..1....3....1....5....5....1....1....3....3....1....3....3....3....6....3....1
..7....6....7....1....1....2....2....1....4....2....1....1....1....1....4....6
..3....8....5....2....7....5....7....2....8....8....2....2....5....7....7....2
..6....1....3....8....9....6....3....4....1....6....9....4....4....3....1....8
..2....2....2....4....2....7....5....7....2....7....4....5....2....2....2....7
..8....5....6....3....3....3....6....5....5....3....6....8....6....8....6....3
..4....4....4....6....4....4....4....9....9....4....7....9....7....4....9....4
..5....7....8....7....8....8....8....8....7....5....5....7....8....5....5....5
..9....9....9....9....6....9....9....6....6....9....8....6....9....9....8....9
		

Formula

Empirical: a(n) = a(n-1) +2*a(n-3) +4*a(n-4) +12*a(n-5) +8*a(n-6) +36*a(n-7) +52*a(n-8) -2*a(n-9) +67*a(n-10) -5*a(n-11) -64*a(n-12) -16*a(n-13) -46*a(n-14) -29*a(n-15) -127*a(n-16) -14*a(n-17) -174*a(n-18) -70*a(n-19) +187*a(n-20) -59*a(n-21) +52*a(n-22) -24*a(n-23) +88*a(n-24) -168*a(n-25) +74*a(n-26) +320*a(n-27) -82*a(n-28) -66*a(n-29) -284*a(n-30) +46*a(n-31) +32*a(n-32) +230*a(n-33) +2*a(n-34) -203*a(n-35) +39*a(n-36) +8*a(n-37) +156*a(n-38) -42*a(n-39) +68*a(n-40) -88*a(n-41) +16*a(n-42) -24*a(n-43) +14*a(n-44) +a(n-45) -9*a(n-46) -12*a(n-47) -16*a(n-48) +10*a(n-49) +a(n-50) +3*a(n-51) -2*a(n-52) +a(n-55) +a(n-56)