This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A189619 #13 Oct 20 2019 15:55:18 %S A189619 16,256,1723,8496,50024,357323,2482591,15915001,100745265,655633882, %T A189619 4322765564,28292943180,183873191611,1195974189947,7802581300173, %U A189619 50931021729006,332106212299242,2164490825527781,14110729853099870 %N A189619 Number of 4 X n binary arrays without the pattern 0 1 0 diagonally, antidiagonally or horizontally. %H A189619 R. H. Hardin, <a href="/A189619/b189619.txt">Table of n, a(n) for n = 1..200</a> %H A189619 Robert Israel, <a href="/A189619/a189619.pdf">Maple-assisted proof of empirical recurrence</a> %F A189619 Empirical: a(n) = 8*a(n-1) -14*a(n-2) +10*a(n-3) +258*a(n-4) -737*a(n-5) -1502*a(n-6) +1780*a(n-7) +8033*a(n-8) -4800*a(n-9) -30115*a(n-10) +54016*a(n-11) -79554*a(n-12) -215482*a(n-13) +787373*a(n-14) -626468*a(n-15) -426934*a(n-16) +3545678*a(n-17) -6093224*a(n-18) +8409993*a(n-19) -6556066*a(n-20) +986540*a(n-21) -4549030*a(n-22) +9400135*a(n-23) -23776243*a(n-24) +29721357*a(n-25) -36187856*a(n-26) +30281962*a(n-27) -31933555*a(n-28) +10845312*a(n-29) +5786415*a(n-30) +7694508*a(n-31) +5236176*a(n-32) -9921669*a(n-33) -713908*a(n-34) +1520657*a(n-35) -3672439*a(n-36) +1127159*a(n-37) +4759522*a(n-38) -673175*a(n-39) -2818276*a(n-40) -151046*a(n-41) +1043153*a(n-42) +59137*a(n-43) -154754*a(n-44) -24424*a(n-45) +16833*a(n-46) +160*a(n-47) -631*a(n-48) -60*a(n-49) +4*a(n-50). %F A189619 Empirical formula verified (see link). - _Robert Israel_, Oct 20 2019 %e A189619 Some solutions for 4 X 3: %e A189619 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 1 %e A189619 1 0 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 1 %e A189619 1 1 1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 %e A189619 0 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 %p A189619 Configs:= [seq(convert(n,base,2)[1..8],n=2^8..2^9-1)]: %p A189619 Compatible:= proc(i,j) local Xi,Xj,k; %p A189619 Xi:= Configs[i]; Xj:= Configs[j]; %p A189619 if Xi[5..8] <> Xj[1..4] then return 0 fi; %p A189619 if Xi[1]=0 and ((Xi[5]=1 and Xj[5]=0) or (Xi[6]=1 and Xj[7]=0)) then return 0 fi; %p A189619 if Xi[2]=0 and ((Xi[6]=1 and Xj[6]=0) or (Xi[7]=1 and Xj[8]=0)) then return 0 fi; %p A189619 if Xi[3]=0 and ((Xi[6]=1 and Xj[5]=0) or (Xi[7]=1 and Xj[7]=0)) then return 0 fi; %p A189619 if Xi[4]=0 and ((Xi[7]=1 and Xj[6]=0) or (Xi[8]=1 and Xj[8]=0)) then return 0 fi; %p A189619 1 %p A189619 end proc: %p A189619 T:= Matrix(256,256,Compatible): %p A189619 Tu[0]:= u: %p A189619 for nn from 1 to 30 do Tu[nn]:= T . Tu[nn-1] od: %p A189619 [16, seq(u^%T . Tu[n],n=0..30)]; # _Robert Israel_, Oct 20 2019 %Y A189619 Row 4 of A189617. %K A189619 nonn %O A189619 1,1 %A A189619 _R. H. Hardin_, Apr 24 2011