A189644 Number of n X 3 array permutations with each element moving zero or one space horizontally, diagonally or antidiagonally.
3, 33, 263, 2161, 17655, 144353, 1180167, 9648721, 78885143, 644942273, 5272862503, 43109407281, 352450114615, 2881530764193, 23558566731847, 192608065601041, 1574708145738583, 12874360876413313, 105257071556189543
Offset: 1
Keywords
Examples
Some solutions for 4 X 3: ..0..1..2....1..0..2....1..0..4....4..0..2....0..2..1....0..3..4....1..0..2 ..7..5..4....3..8..5....3..2..5....3..5..1....3..4..5....1..2..7....3..6..5 ..6..3.10....6..9..4...10..6..7...10..6..8....7..9..8....6..5.10....7..8..4 ..9..8.11....7.11.10....9..8.11....9.11..7...10..6.11....9..8.11....9.10.11
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A189650.
Formula
Empirical: a(n) = 9*a(n-1) - 6*a(n-2) - 8*a(n-3) + 16*a(n-4).
Empirical g.f.: x*(3 + 6*x - 16*x^2 + 16*x^3) / (1 - 9*x + 6*x^2 + 8*x^3 - 16*x^4). - Colin Barker, May 02 2018
Comments