cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189653 Number of 5Xn array permutations with each element moving zero or one space horizontally, diagonally or antidiagonally.

Original entry on oeis.org

1, 450, 17655, 2631821, 250758892, 30010432933, 3292827578005, 376678790309002, 42358721253919843, 4801283687544580305, 542386040165423966236, 61365524584279523157641, 6938297347463763255984633
Offset: 1

Views

Author

R. H. Hardin Apr 24 2011

Keywords

Comments

Row 5 of A189650

Examples

			Some solutions for 5X3
..0..2..1....0..3..4....0..3..2....0..2..4....0..1..2....4..1..2....0..3..4
..3..6..5....1..2..5....1..5..4....1..6..5....3..4..5....3..0..5....1..2..7
..4.11..8....6..9.10...10..6..7...10..3..8....7..6..8....6..8..7....6..5..8
..9.14..7....7..8.13...13..8.11....9.12..7....9.11.10...13.10.11...10.12.11
.10.12.13...12.11.14...12..9.14...13.11.14...12.13.14...12..9.14...13..9.14
		

Formula

Empirical: a(n) = 107*a(n-1) +4303*a(n-2) -406534*a(n-3) -4329464*a(n-4) +466840808*a(n-5) +1338922608*a(n-6) -227992823136*a(n-7) +90951697440*a(n-8) +53386064289152*a(n-9) -108406327693184*a(n-10) -5771603989188608*a(n-11) +11703591191155200*a(n-12) +172452239709961728*a(n-13) +1498301110046938112*a(n-14) +14910534867774803968*a(n-15) -369954950790874443776*a(n-16) -1122779731327948267520*a(n-17) +27415171459521008320512*a(n-18) +13113077428590656225280*a(n-19) -948436399977700515119104*a(n-20) +718072262953029442207744*a(n-21) +15306605215443650927919104*a(n-22) -23785626604164302597783552*a(n-23) -63183460656377361227317248*a(n-24) +336913590202586242004025344*a(n-25) -1367838179233684601582911488*a(n-26) -4565130350432220898859679744*a(n-27) +19045513342601064393182543872*a(n-28) +60860396016352702310591234048*a(n-29) -56998115344223218475739381760*a(n-30) -453823691284753050683438006272*a(n-31) -393736729027557466236264644608*a(n-32) +1251233979672582675419566702592*a(n-33) +2823288040816995497010406621184*a(n-34) +1031231653598246771565784989696*a(n-35) -4399440162748647480754025005056*a(n-36) -7005172700570647534593105723392*a(n-37) -5260712228450985579008097255424*a(n-38) +2261097267196132807937693319168*a(n-39) +15111807638739449523277750337536*a(n-40) +13977227635584971692638723899392*a(n-41) +9954649350974934287262941184000*a(n-42) -14775252650126481676321748418560*a(n-43) -9222257769877287745000803663872*a(n-44) -9509714054063086127993984122880*a(n-45) -10587625049850095971602849071104*a(n-46) -2743801275209083294223179972608*a(n-47) -6363253539914382491808868335616*a(n-48) +1802733977560574408772213014528*a(n-49) +613085944850739567921947738112*a(n-50) -58537072347407169574936772608*a(n-51) +18124814447614224314725826560*a(n-52) +3190355237963006392049598464*a(n-53)