cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189686 Superabundant numbers (A004394) satisfying the reverse of Robin's inequality (A091901).

This page as a plain text file.
%I A189686 #27 Jan 29 2019 04:36:16
%S A189686 2,4,6,12,24,36,48,60,120,180,240,360,720,840,2520,5040
%N A189686 Superabundant numbers (A004394) satisfying the reverse of Robin's inequality (A091901).
%C A189686 5040 is the last element in the sequence if and only if the Riemann Hypothesis is true. (See Akbary and Friggstad in A004394.)
%H A189686 G. Caveney, J.-L. Nicolas, and J. Sondow, <a href="http://math.colgate.edu/~integers/l33/l33.Abstract.html">Robin's theorem, primes, and a new elementary reformulation of the Riemann Hypothesis</a>, Integers 11 (2011), #A33 (see Table 1).
%H A189686 G. Caveney, J.-L. Nicolas and J. Sondow, <a href="http://arxiv.org/abs/1112.6010">On SA, CA, and GA numbers</a>, arXiv:1112.6010 [math.NT], 2011-2012; Ramanujan J., 29 (2012), 359-384.
%F A189686 Equals A004394 intersect A067698.
%t A189686 kmax = 10^4;
%t A189686 A004394 = Join[{1}, Reap[For[r = 1; k = 2, k <= kmax, k = k + 2, s = DivisorSigma[-1, k]; If[s > r, r = s; Sow[k]]]][[2, 1]]];
%t A189686 A067698 = Select[Range[2, kmax], DivisorSigma[1, #] > Exp[EulerGamma] # Log[Log[#]]&];
%t A189686 Intersection[A004394, A067698] (* _Jean-François Alcover_, Jan 28 2019 *)
%o A189686 (PARI) is(n)=sigma(n) >= exp(Euler) * n * log(log(n)); \\ A067698
%o A189686 lista(nn) = my(r=1, t); forstep(n=2, nn, 2, t=sigma(n, -1); if(t>r && is(n), r=t; print1(n, ", "))); \\ _Michel Marcus_, Jan 28 2019; adapted from A004394
%Y A189686 Cf. A004394, A091901, A067698, A166981, A077006.
%K A189686 nonn
%O A189686 1,1
%A A189686 Geoffrey Caveney, Jean-Louis Nicolas, and _Jonathan Sondow_, May 30 2011
%E A189686 Erroneous terms 1260 and 1680 removed by _Jean-François Alcover_, Jan 28 2019